Class X Mathematics Sample Question Paper

Time allowed: 3 Hours

Max. Marks: 80

General Instructions:

- 1. All the questions are compulsory.
- 2. The questions paper consists of 30 questions divided into 4 sections A, B, C and D.
- 3. Section A comprises of 6 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 10 questions of 3 marks each. Section D comprises of 8 questions of 4 marks each.
- 4. There is no overall choice. However, an internal choice has been provided in two questions of 1 mark each, two questions of 2 marks each, four questions of 3 marks each and three questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.
- 5. Use of calculators is not permitted.

	Section-B	
7.	The HCF and LCM of two numbers are 9 and 360 respectively. If one number is 45, find the other number.	2
	OR	
	Show that $7 - \sqrt{5}$ is irrational, give that $\sqrt{5}$ is irrational.	
8.	Find the 20 th term from the last term of the AP 3,8,13,,253	2
	OR	
	If 7 times the 7 th term of an A.P is equal to 11 times its 11 th term, then find its 18 th term.	
9.	Find the coordinates of the point P which divides the join of A(-2,5) and B(3,-5) in the ratio $2:3$	2
10.	A card is drawn at random from a well shuffled deck of 52 cards. Find the probability of getting neither a red card nor a queen.	2
11.	Two dice are thrown at the same time and the product of numbers appearing on them is noted. Find the probability that the product is a prime number	2
12.	For what value of p will the following pair of linear equations have infinitely many solutions (p-3)x+3y = p px+py = 12	2
	Section-C	
13.	Use Euclid's Division Algorithm to find the HCF of 726 and 275.	3
14.	Find the zeroes of the following polynomial: $5\sqrt{5}x^2+30x+8\sqrt{5}$	3
15.	Places A and B are 80 km apart from each other on a highway. A car starts from A and another from B at the same time. If they move in same direction they meet in 8 hours and if they move towards each other they meet in 1 hour 20 minutes. Find the speed of cars.	3
16.	The points $A(1,-2)$, $B(2,3)$, $C(k,2)$ and $D(-4,-3)$ are the vertices of a parallelogram. Find the value of k.	3
	OR	
	Find the value of k for which the points (3k-1,k-2), (k,k-7) and (k-1,-k-2) are collinear.	
17.	Prove that $\cot 8 - \tan 8 = \frac{2\cos^2 8 - 1}{\sin 8\cos 8}$	3
	OR Prove that sin8(1 + tan8) + cos8(1 + cot8) = sec8 + cosec8	
18.	The radii of two concentric circles are 13 cm and 8 cm. AB is a diameter of the bigger circle and BD is a tangent to the smaller circle touching it at D and intersecting the larger circle at P on producing. Find the length of AP.	3

			Section-D				
23.	A train takes 2 hours less for a journey of 300km if its speed is increased by 5 km/h from its usual speed. Find the usual speed of the train.						
			OR				
	Solve for x: ${(a+)}$	Solve for x: $\frac{1}{(a+b+x)} = \frac{1}{a} + \frac{1}{b} + \frac{1}{x}$, $[a \neq 0, b \neq 0, x \neq 0, x \neq -(a+b)]$					
24.	An AP consists of 50 terms of which 3 rd term is 12 and the last term is 106. Find the 29 th term.						
25.	Prove that in a of other two side		of the hypotenuse is equal to s	sum of the squares	4		
26.	Draw a \triangle ABC with sides 6cm, 8cm and 9 cm and then construct a triangle similar to \triangle ABC whose sides are $\frac{3}{5}$ of the corresponding sides of \triangle ABC.						
27.	coming directl	y towards it. If it takes 12 mi	ower observes a car moving a nutes for the angle of depress ch the observation tower fron	ion to change from	4		
			OR		-		
	is 30^0 and the a		oint 60 m above the surface of dow from the same point in w e of water.		4		
28.	is 30 ⁰ and the a Find the height	angle of depression of its sha t of the cloud from the surfac	dow from the same point in w	vater of lake is 60 ⁰ .	4		
28.	is 30 ⁰ and the a Find the height The median of	angle of depression of its sha t of the cloud from the surfac	dow from the same point in w e of water.	vater of lake is 60 ⁰ .	4		
28.	is 30 ⁰ and the a Find the height The median of	angle of depression of its sha t of the cloud from the surfac the following data is 525. Fi	dow from the same point in we of water.	vater of lake is 60 ⁰ .	4		
28.	is 30 ⁰ and the a Find the height The median of	angle of depression of its sha t of the cloud from the surfac the following data is 525. Fi Class Interval	dow from the same point in we of water. nd the values of x and y if the Frequency	vater of lake is 60 ⁰ .	4		
28.	is 30 ⁰ and the a Find the height The median of	angle of depression of its sha t of the cloud from the surfac The following data is 525. Fi Class Interval 0-100	dow from the same point in we of water. Ind the values of x and y if the Frequency 2	vater of lake is 60 ⁰ .	4		
28.	is 30 ⁰ and the a Find the height The median of	angle of depression of its sha t of the cloud from the surfac The following data is 525. Fi Class Interval 0-100 100-200	dow from the same point in we of water. nd the values of x and y if the Frequency 2 5	vater of lake is 60 ⁰ .	4		
28.	is 30 ⁰ and the a Find the height The median of	angle of depression of its sha t of the cloud from the surfac The following data is 525. Fi Class Interval 0-100 100-200 200-300	dow from the same point in we of water. Ind the values of x and y if the Frequency 2 5 x	vater of lake is 60 ⁰ .	4		
28.	is 30 ⁰ and the a Find the height The median of	angle of depression of its sha t of the cloud from the surface The following data is 525. Fi Class Interval 0-100 100-200 200-300 300-400	dow from the same point in we of water. Ind the values of x and y if the Frequency 2 5 x 12	vater of lake is 60 ⁰ .	4		
28.	is 30 ⁰ and the a Find the height The median of	angle of depression of its sha t of the cloud from the surface The following data is 525. Fi Class Interval 0-100 100-200 200-300 300-400 400-500	dow from the same point in we of water. Ind the values of x and y if the Frequency 2 5 x 12 17	vater of lake is 60 ⁰ .	4		
28.	is 30 ⁰ and the a Find the height The median of	angle of depression of its sha t of the cloud from the surface The following data is 525. Fi Class Interval 0-100 100-200 200-300 300-400 400-500 500-600	dow from the same point in we of water. Ind the values of x and y if the Frequency 2 5 x 12 17 20	vater of lake is 60 ⁰ .	4		
28.	is 30 ⁰ and the a Find the height The median of	angle of depression of its sha t of the cloud from the surface The following data is 525. Fi Class Interval 0-100 0-100 200-300 200-300 300-400 400-500 500-600 600-700	dow from the same point in we of water. Ind the values of x and y if the Frequency 2 5 x 12 17 20 Y	vater of lake is 60 ⁰ .	4		

Marks	Number of students	
0-10	5	
10-20	3	
20-30	4	
30-40	3	
40-50	4	
50-60	4	
60-70	7	
70-80	9	
80-90	7	
90-100	8	
	above and hence find the median.	
e radii of circular ends of a bucket of curved surface.	of height 24 cm are 15 cm and 5 cm.	Find the area of

Contra-

Class: X Mathematics **Marking Scheme**

Time allowed: 3hrs

Maximum Marks: 80

Q No	SECTION A	Marks
1	$(\frac{-5+(-1)}{2},\frac{4+0}{2}) = (\frac{a}{3},2)$ $\frac{a}{3} = \frac{-6}{2} \implies a = -9 \implies \Longrightarrow$	1
2	4K - 28 + 8 = 0 K= 5	1/2 1/2
	For roots to be real and equal, $b^2 - 4ac = 0$ $(5k)^2 - 4 \times 1 \times 16 = 0$ $k = \pm \frac{8}{5}$	1/2 1/2
3	$\cot^{2}8 - \frac{1}{\sin^{2}8} = \cot^{2}8 - \csc^{2}\theta$ $= -1$ OR $\sin\theta = \cos\theta \theta = 45^{\circ}$ $\therefore 2\tan\theta + \cos^{2}\theta = 2 + \frac{1}{2} = \frac{3}{2}$	1 1/2 1/2
4	$a_1 = 3, a_3 = 7$ $s_3 = {}^{3}(3 + 7) = 15$	1/2 1/2
5	$AD = AE DE BC$ $DB EC$ $\angle ADE = \angle ABC = 48^{0}$	1/2 1/2
6	4 places	1
	SECTION B	
7	HCF × LCM = Product of two numbers $9 \times 360 = 45 \times 2^{nd}$ number 2^{nd} number = 72	1
	OR	

	\mathbf{L} at the construction of the construction of \mathbf{T} is imposite to \mathbf{L}	
	Let us assume, to the contrary that $7 - \sqrt{5}$ is irrational $7 - \sqrt{5} = \frac{p}{-}$, Where p & q are co-prime and $q \neq 0$	
	q	1
	$=\sqrt{5}=\frac{7q-p}{2}$	
	$\frac{q}{7q-p}$ is rational = $\sqrt{5}$ is rational which is a contradiction	
		1
	Hence 7 – $\sqrt{5}$ is irrational	
8	20^{th} term from the end = l - (n - 1)d	¹ / ₂
	= 253-19 ×5	1
	= 158	
		¹ / ₂
	OR	
	$7a_7 = 11a_{11} \implies 7(a+6d) = 11(a+10d)$	1
	$\implies a + 17d = 0 \therefore a_{18} = 0$	1
		1
9	$X = \frac{6-6}{6} = 0$	1
	v -10+15 d	
	$Y = \frac{-10+15}{5} = 1$	1
10	Probability of either a red card or a queen $26+2$ 28	1
	$-\frac{26+2}{52}=\frac{28}{52}$	1
	P(neither red car nor a queen) = $1 - \frac{28}{52}$ = $\frac{24}{52}$ or $\frac{7}{13}$	1
	$-\frac{24}{24}$ or 7	
11	Total number of outcomes = 36	1
	Favourable outcomes are $(1,2)$, $(2,1)$, $(1,3)$, $(3,1)$, $(1,5)$, $(5,1)$ i.e. 6	1
	Required probability = $\frac{6}{36}$ or $\frac{1}{6}$	-
	36 6	
12	For infinitely many solutions	1,
12	$p-3 _ 3 \p$	¹ / ₂
	$\frac{1}{p}$ $\frac{1}{p}$ $\frac{1}{p}$ $\frac{1}{12}$	1
	$\frac{p-3}{p} = \frac{3}{p} = \frac{-p}{12}$ $\implies p^2 - 3p = 3p \qquad \text{or} \qquad 12 \times 3 = p^2$ $\implies p^2 - 6p = 0 \qquad \text{or} \qquad p = \pm 6$ $p = 0, 6$	
	$p^2-6p=0$ or $p=\pm 6$	
	p = 0, 0 $\implies p = 6$	
	$\rightarrow p = 0$	
	SECTION: C	
13	By Euclid's Division lemma	6 ×
	$726 = 275 \times 2 + 176$	1
	$275 = 176 \times 1 + 99$	$\frac{1}{2} = \frac{3}{3}$
	$176 = 99 \times 1 + 77$	5
	$99 = 77 \times 1 + 22$	
	$77=22 \times 3 + 11$	
	$22 = 11 \times 2 + 0$	
	HCF = 11	

14	$5\sqrt{5x^2+30x+8\sqrt{5}}$	1
	$=5\sqrt{5}x^{2}+20x+10x+8\sqrt{5}$	
	$=5x(\sqrt{5}x+4)+2\sqrt{5}(\sqrt{5}x+4)$	
	$=(\sqrt{5x}+4)(5x+2\sqrt{5})$	1
	$= (\sqrt{5}x + 4) (5x + 2\sqrt{5})$ Zeroes are $\frac{-4}{\sqrt{5}} = \frac{-4\sqrt{5}}{5}$ and $\frac{-2\sqrt{5}}{5}$	1
	$\sqrt{5}$ 5 5	
15	Let the speed of car at A be x km/h	1
	And the speed of car at B be y km/h Case 1 $8x-8y = 80$	
	x-y = 10	
	Case 2 $\frac{4}{3}x + \frac{4}{3}y = 80$	
	$\begin{array}{c} 3 & 3 \\ x+y = 60 \end{array}$	1
	on solving $x = 35$ and $y = 25$	1
	Hence, speed of cars at A and B are 35 km/h and 25 km/h respectively.	
16		1 ¹ / ₂
	(-4,-3) D C (%2)	1-/2
	(1,2) (2,3)	
	Diagonals of parallelogram bisect each other midpoint of AC = midpoint of BD	¹ / ₂
	$\implies \qquad (\frac{1+k}{2}, \frac{-2+2}{2}) = (\frac{-4+2}{2}, \frac{-3+3}{2})$. 2
	1+k2	1
	$ \Rightarrow \overline{2} \overline{2} \\ \Rightarrow k = -3 $	
	OR	-
		_
	For collinearity of the points, area of the triangle formed by given Points is zero. $1 \int (2k-1)(k-7+k+2) + k(-k-2-k+2) + (k-1)(k-2-k+2)$	1
	$\implies \frac{1}{2}\{(3k-1)(k-7+k+2)+k(-k-2-k+2)+(k-1)(k-2-k+2)+(k-2-k$	
	$ 7) = 0 ⇒ {(3k-1)(2k-5) - 2k^2 + 5k - 5} = 0 $	1
	$\implies \qquad 4k^2 - 12k = 0$	1
	\implies $k = 0, 3$	
17	$I HS = \cot \theta = \tan \theta$	1
1/	LHS = $\cot\theta - \tan\theta$ _ $\cos\theta$ sin0	1
	$\frac{-5}{100} \frac{-5}{100} \frac{-5}{100$	¹ / ₂
	$=$ $\frac{1}{2^{\sin 0} \cos \theta_2}$	1
	$=\frac{\cos^2 0-1+\cos 0}{\sin 0 \cos 0}$	1
	$=\frac{2\cos^2 0-1}{\sin 0 \cos 0} RHS$	¹ / ₂
	OR	1

š 3

		1
		1
	AD is median, So BD=DC. $AB^2 = AE^2 + BE^2$ $AC^2 = AE^2 + EC^2$	1
	Adding both, $AB^{2}+AC^{2} = 2AE^{2}+BE^{2}+CE^{2}$ $= 2(AD^{2}-ED^{2})+(BD-ED)^{2}+(DC+ED)^{2}$ $= 2AD^{2}-2ED^{2}+BD^{2}+ED^{2}-2BD.ED+DC^{2}+ED^{2}+2CD.ED$ $= 2AD^{2}+BD^{2}+CD^{2}$ $= 2(AD^{2}+BD^{2})$	1
20	$ r = 42cm \frac{2 Gr0}{360^{\circ}} = 44 8 = \frac{44 \times 360 \times 7}{2 \times 22 \times 42} = 60^{\circ} $	1
	Area of minor segment = area of sector – area of corresponding triangle $= \frac{Gr^2 0}{360^\circ} - \frac{\sqrt{3}}{4}r^2$ $= r^2 [\frac{22}{7} \times \frac{60}{360} - \frac{\sqrt{3}}{4}]$	¹ / ₂
	$= 42 \times 42 \left[\frac{11}{44 - 21\sqrt{3}} \right]$ = 42 × 42 × $\left[\frac{44 - 21\sqrt{3}}{84} \right]$ = 21 (44 - 21√3) cm ²	¹ / ₂ 1
21	Volume of water flowing through pipe in 1 hour $=\frac{22}{7} \times 15 \times 1000 \times \frac{7}{100} \times \frac{7}{100} \frac{7}{100}$ $= 231 \text{ m}^{3}$ Volume of rectangular tank = $50 \times 44 \times \frac{21}{100}$	1
	$= 22 \times 21 \text{ m}^3$	1
	Time taken to flow 231 m ³ of water = 1 hours \therefore Time taken to flow 22 × 21 m ³ of water = $\frac{1}{231}$ × 22 × 21 = 2 hours	1
	OR	
	Number of balls $=$ Volume of solid sphere $\frac{4}{\text{Volume of 1 spherical ball}}$	1
	$=\frac{\frac{4}{3} \times G \times 3 \times 3 \times 3}{\frac{4}{3} \times G \times 0.3 \times 0.3 \times 0.3}$	1
	= 1000	1

22	200-250 is the modal class	1
	$Mode = l + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h$	1
	$= 200 + \frac{12-5}{24-5-2} \times 50$	¹ / ₂ ¹ / ₂
	= 200+20.59 = Rs. 220.59	
	Section D	
23	Let the usual speed of the train be x km/h	2
	$\frac{300}{x} - \frac{300}{x+5} = 2$	
	$\implies \begin{array}{c} x^2 + 5x - 750 = 0 \\ (x + 30)(x - 25) = 0 \end{array}$	1
	x = -30,25 \therefore Usual Speed of the train = 25 km/h	1
	OR	1
	$(a+b+x) = \overline{x} - \overline{a} + \overline{b}$ $\implies \frac{x-a-b-x}{x(a+b+x)} = \frac{b+a}{ab}$	1
	$-ab = x^{2}+(a+b)x$ $x^{2}+ax+bx+ab = 0$ $(x+a)(x+b) = 0$	1
	x=-a,-b	1
24	$n=50, a_3=12 \text{ and } a_{50}=106$ a+2d = 12 a+49d = 106	¹ / ₂ 1
	on solving, $d=2$ and $a=8$	1
	$a_{29} = a + 28d$ = $8 + 28 \times 2 = 64$	1/2 1
25	Correct given, To prove, figure and construction	¹ / ₂
		$\times 4$ = 2
	Correct proof	2
26	Correct construction of ΔABC Correct construction of similar triangle	1 3

		Marks	Number of students	cf	
	-	0-10	5	5	-
	-	10-20	3	8	
	-	20-30	4	12	-
	-	30-40	3	15	-
	-	40-50	3	18	
	-	50-60	4	22	-
	-	60-70	7	29	-
	-	70-80	9	38	-
		80-90	7	45	
	-	90-100	8	53	
	Correct tabl Drawing co Median=64				1 2 1
29	h = Curved surf = $\frac{22}{7}$ = $\frac{22}{7}$	= 15cm, $r_2 = 5cm$ 24cm $l = \int h^2 + (r_1 - r_2)$ $= \sqrt{24^2 + 10^2} = 260$ face area of bucket = $\times (15 + 5) \times 260$ $\times 20 \times 260$ $\frac{440}{7}$ cm ² or 1634.3cm	$n(r_1 + r_2)l$	E	1 1 1 1
30	$\frac{1}{\cos \theta}$ $1+s$ $= p$	D = =	$B = p^{2} - p^{2} \sin^{2}\theta$ $2\sin 8 + (1 - p^{2}) = 0$ $4 - 4(1 + p^{2})(1 - p^{2})$ $4 - 4(1 - p^{4}) = 4p^{4}$ $\overline{4p^{4}} = \frac{-1 \pm p^{2}}{(1 + p^{2})}$ $= \frac{p^{2} - 1}{(1 + p^{2})}, -1$		1 1 1 1/2 1
		• Losec 8 = $\frac{p^{2}-1}{p^{2}-1}$, -2	1		

š 9