Class X
 Mathematics Sample Question Paper

Time allowed: 3 Hours
Max. Marks: 80

General Instructions:

1. All the questions are compulsory.
2. The questions paper consists of 30 questions divided into 4 sections A, B, C and D.
3. Section A comprises of 6 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 10 questions of 3 marks each. Section D comprises of 8 questions of 4 marks each.
4. There is no overall choice. However, an internal choice has been provided in two questions of 1 mark each, two questions of 2 marks each, four questions of 3 marks each and three questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.
5. Use of calculators is not permitted.

Section-A		
1.	Find the value of a, for which point $\mathrm{P}\left(\frac{\mathrm{a}}{3}, 2\right)$ is the mid-point of the line segment joining the points $\mathrm{Q}(-5,4)$ and $\mathrm{R}(-1,0)$.	1
2.	Find the value of k, for which one root of the quadratic equation $k x^{2}-14 x+8=0$ is 2 . OR Find the value(s) of k for which the equation $\mathrm{x}^{2}+5 \mathrm{kx}+16=0$ has real and equal roots.	1
3.	If $\sin 8=\cos 8$, then find the value of $2 \tan \theta+\cos ^{2} \theta$	1
4.	If nth term of an A.P. is ($2 \mathrm{n}+1$), what is the sum of its first three terms?	1
5.	In figure if $\mathrm{AD}=6 \mathrm{~cm}, \mathrm{DB}=9 \mathrm{~cm}, \mathrm{AE}=8 \mathrm{~cm}$ and $\mathrm{EC}=12 \mathrm{~cm}$ and $\angle \mathrm{ADE}=48^{\circ}$. Find $\angle \mathrm{ABC}$	1
6.	After how many decimal places will the decimal expansion of $\frac{23}{2^{4} \times 5^{3}}$ terminate?	1

Section-B

7. The HCF and LCM of two numbers are 9 and 360 respectively. If one number is 45 , find the other number.

OR

Show that $7-\sqrt{5}$ is irrational, give that $\sqrt{5}$ is irrational.
8. Find the $20^{\text {th }}$ term from the last term of the AP $3,8,13, \ldots, 253$

OR

If 7 times the $7^{\text {th }}$ term of an A.P is equal to 11 times its $11^{\text {th }}$ term, then find its $18^{\text {th }}$ term.
9. Find the coordinates of the point P which divides the join of $\mathrm{A}(-2,5)$ and $\mathrm{B}(3,-5)$ in the ratio $\mathbf{2}$ 2:3
10. A card is drawn at random from a well shuffled deck of 52 cards. Find the probability of getting neither a red card nor a queen.
11. Two dice are thrown at the same time and the product of numbers appearing on them is noted. Find the probability that the product is a prime number
12. For what value of p will the following pair of linear equations have infinitely many solutions

$$
\begin{aligned}
&(p-3) x+3 y= \\
&-p x+p y=12
\end{aligned}
$$

	Section-C		
13.	Use Euclid's Division Algorithm to find the HCF of 726 and 275.	$\mathbf{3}$	

14. Find the zeroes of the following polynomial:
$5 \sqrt{5} x^{2}+30 x+8 \sqrt{5}$
15. Places A and B are 80 km apart from each other on a highway. A car starts from A and another from B at the same time. If they move in same direction they meet in 8 hours and if they move towards each other they meet in 1 hour 20 minutes. Find the speed of cars.
16. The points $A(1,-2), B(2,3), C(k, 2)$ and $D(-4,-3)$ are the vertices of a parallelogram. Find the value of k .

OR

Find the value of k for which the points ($3 \mathrm{k}-1, \mathrm{k}-2$), ($\mathrm{k}, \mathrm{k}-7$) and ($\mathrm{k}-1,-\mathrm{k}-2$) are collinear.
17. Prove that $\cot 8-\tan 8=\frac{2 \cos ^{5} 8-1}{\sin 8 \cos 8}$
OR
18. The radii of two concentric circles are 13 cm and 8 cm . AB is a diameter of the bigger circle and BD is a tangent to the smaller circle touching it at D and intersecting the larger circle at P on producing. Find the length of AP.
19. In figure $\angle 1=\angle 2$ and $\Delta \mathrm{NSQ} \cong \triangle \mathrm{MTR}$, then prove that $\Delta \mathrm{PTS} \sim \Delta \mathrm{PRQ}$.

OR

In $\triangle \mathrm{ABC}$, if AD is the median, then show that $\mathrm{AB}^{2}+\mathrm{AC}^{2}=2\left(\mathrm{AD}^{2}+\mathrm{BD}^{2}\right)$

20. Find the area of the minor segment of a circle of radius 42 cm , if length of the corresponding arc is 44 cm .
21. Water is flowing at the rate of 15 km per hour through a pipe of diameter 14 cm into a rectangular tank which is 50 m long and 44 m wide. Find the time in which the level of water in the tank will rise by 21 cm .

OR

A solid sphere of radius 3 cm is melted and then recast into small spherical balls each of diameter 0.6 cm . Find the number of balls.
22. The table shows the daily expenditure on grocery of 25 households in a locality. Find the modal daily expenditure on grocery by a suitable method.

Daily Expenditure (in Rs.)	$100-150$	$150-200$	$200-250$	$250-300$	$300-350$
No of households	4	5	12	2	2

Section-D			
23.	A train takes 2 hours less for a journey of 300 km if its speed is increased by $5 \mathrm{~km} / \mathrm{h}$ from its usual speed. Find the usual speed of the train.		4
	OR		
	Solve for $\left.\mathrm{x}: \frac{1}{(\mathrm{a}+\mathrm{b}+\mathrm{x})}={ }^{1} \underset{\mathrm{a}}{ \pm} \underset{\mathrm{b}}{ \pm}{ }^{1} \underset{\mathrm{x}}{[\mathrm{f}} \mathrm{a} \neq 0, \mathrm{~b} \neq 0, \mathrm{x} \neq 0, \mathrm{x} \neq-(\mathrm{a}+\mathrm{b})\right]$		
24.	An AP consists of 50 terms of which $3^{\text {rd }}$ term is 12 and the last term is 106 . Find the $29^{\text {th }}$ term.		4
25.	Prove that in a right angled triangle square of the hypotenuse is equal to sum of the squares of other two sides.		4
26.	Draw a $\triangle \mathrm{ABC}$ with sides $6 \mathrm{~cm}, 8 \mathrm{~cm}$ and 9 cm and then construct a triangle similar to $\triangle \mathrm{ABC}$ whose sides are $\frac{3}{5}$ of the corresponding sides of $\triangle \mathrm{ABC}$.		4
27.	A man on the top of a vertical observation tower observes a car moving at a uniform speed coming directly towards it. If it takes 12 minutes for the angle of depression to change from 30° to 45^{0}, how long will the car take to reach the observation tower from this point?		4
	$\therefore \square$		
	The angle of elevation of a cloud from a point 60 m above the surface of the water of a lake is 30° and the angle of depression of its shadow from the same point in water of lake is 60°. Find the height of the cloud from the surface of water.		
28.	The median of the following data is 525 . Find the values of x and y if the total frequency is 100.		4
	Class Interval	Frequency	
	0-100	2	
	100-200	5	
	200-300	x	
	300-400	12	
	400-500	17	
	500-600	20	
	600-700	Y	
	700-800	9	
	800-900	7	
	900-1000	4	

		OR	
	The following data indicates	students in Mathemat	
	Marks	Number of students	
	0-10	5	
	10-20	3	
	20-30	4	
	30-40	3	
	40-50	4	
	50-60	4	
	60-70	7	
	70-80	9	
	80-90	7	
	90-100	8	
	Draw less than type ogive for	and hence find the med	
29.	The radii of circular ends of its curved surface.	24 cm are 15 cm and	4
30.	If $\sec 8+\tan 8=e$, then fin	osec8.	4

Class: X
Mathematics
Marking Scheme
Time allowed: 3hrs
Maximum Marks: 80

Q No	SECTION A	Marks
1	$\begin{gathered} \left(\frac{-5+(-1)}{2}, \frac{4+0}{2}\right)=\left(\frac{a}{3}, 2\right) \\ \frac{a}{3}=\frac{-6}{2} \Rightarrow a=-9 \end{gathered}$	1
2	$\begin{aligned} & 4 \mathrm{~K}-28+8=0 \\ & \mathrm{~K}=5 \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$
	OR	
	For roots to be real and equal, $\mathrm{b}^{2}-4 \mathrm{ac}=0$ $\Rightarrow \quad(5 \mathrm{k})^{2}-4 \times 1 \times 16=0 \quad \mathrm{k}= \pm_{\underline{5}}^{8}$	
3	$\begin{aligned} & \cot ^{2} 8- 1 \\ & \underline{\sin ^{2} 8}=\cot ^{2} 8-\operatorname{cosec}^{2} \theta \\ &=-1 \end{aligned}$	$\begin{gathered} 1 \\ 1 / \imath \\ 1 / 2 \end{gathered}$
	OR	
	$\begin{gathered} \sin \theta=\cos \theta=45^{\circ} \\ \therefore 2 \tan \theta+\cos ^{2} \theta=2+{ }^{\circ}= \end{gathered}$	
4	$\begin{gathered} a_{1}=3, a_{3}=7 \\ s_{3}={ }_{2}^{0}(3+7)=15 \end{gathered}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$
5		$\begin{aligned} & 1 / \imath \\ & 1 / 2 \end{aligned}$
6	4 places	1
	SECTION B	
7	$\mathrm{HCF} \times \mathrm{LCM}=$ Product of two numbers $9 \times 360=45 \times 2^{\text {nd }}$ number $2^{\text {nd }}$ number $=72$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
	OR	

	Let us assume, to the contrary that $7-\sqrt{5}$ is irrational $7-\sqrt{5}=\stackrel{ }{\mathrm{p}}$, Where $\mathrm{p} \& \mathrm{q}$ are co-prime and $\mathrm{q} \neq 0$ $=\sqrt{5}=\frac{7 \mathrm{q}-\mathrm{p}}{\mathrm{q}}$ $7 q-p$ is rational $=\sqrt{5}$ is rational which is a contradiction q Hence $7-\sqrt{5}$ is irrational	
8	$\begin{aligned} & 20^{\text {th }} \text { term from the end }=1-(\mathrm{n}-1) \mathrm{d} \\ & =253-19 \times 5 \\ & =158 \end{aligned}$	$\begin{gathered} 1 / 2 \\ 1 \\ 1 / 2 \end{gathered}$$1$$1$
	OR	
	$\begin{aligned} 7 \mathrm{a}_{7} & =11 \mathrm{a}_{11} \Longrightarrow 7(\mathrm{a}+6 \mathrm{~d})=11(\mathrm{a}+10 \mathrm{~d}) \\ & \Rightarrow \mathrm{a}+17 \mathrm{~d}=0 \therefore \mathrm{a}_{18}=0 \end{aligned}$	
9	$\begin{aligned} & X=\frac{6-6}{}=0 \\ & Y=\frac{-10+15}{5}=1 \end{aligned}$	1 1
10	Probability of either a red card or a queen $\begin{aligned} \mathrm{P}(\text { neither red car nor a queen }) & =1-\frac{28}{52} \\ & =\frac{28}{52} \\ & =\frac{24}{52} \text { or } \frac{7}{13} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
11	Total number of outcomes $=36$ Favourable outcomes are $(1,2),(2,1),(1,3),(3,1),(1,5),(5,1)$ i.e. 6 Required probability $=\frac{6}{36}$ or $\frac{1}{6}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
12	For infinitely many solutions $$	$1 / 2$ 1
	SECTION: C	
13	By Euclid's Division lemma $\begin{aligned} & 726=275 \times 2+176 \\ & 275=176 \times 1+99 \\ & 176=99 \times 1+77 \\ & 99=77 \times 1+22 \\ & 77=22 \times 3+11 \\ & 22=11 \times 2+0 \\ & H C F=11 \end{aligned}$	$\begin{gathered} 6 \times \\ 1 / 2= \\ 3 \end{gathered}$

14	$\begin{aligned} & 5 \sqrt{5} x^{2}+30 x+8 \sqrt{5} \\ & =5 \sqrt{5} x^{2}+20 x+10 x+8 \sqrt{5} \\ & =5 x(\sqrt{5} x+4)+2 \sqrt{5}(\sqrt{5} x+4) \\ & =(\sqrt{5} x+4)(5 x+2 \sqrt{5}) \\ & \text { Zeroes are } \frac{-4}{\sqrt{5}}=\frac{-4 \sqrt{5}}{5} \text { and } \frac{-2 \sqrt{5}}{5} \end{aligned}$	1 $\begin{aligned} & 1 \\ & 1 \end{aligned}$
15	Let the speed of car at A be $x \mathrm{~km} / \mathrm{h}$ And the speed of car at B be $y \mathrm{~km} / \mathrm{h}$ Case 1 $\begin{gathered} 8 x-8 y=80 \\ x-y=10 \end{gathered}$ Case 2 $\begin{gathered} \frac{4}{3} x+\frac{4}{3} y=80 \\ x+y=60 \end{gathered}$ on solving $\mathrm{x}=35$ and $\mathrm{y}=25$ Hence, speed of cars at A and B are $35 \mathrm{~km} / \mathrm{h}$ and $25 \mathrm{~km} / \mathrm{h}$ respectively.	1 1 1
16	For collinearity of the points, area of the triangle formed by given Points is zero. $\Rightarrow \frac{1}{2}\{(3 \mathrm{k}-1)(\mathrm{k}-7+\mathrm{k}+2)+\mathrm{k}(-\mathrm{k}-2-\mathrm{k}+2)+(\mathrm{k}-1)(\mathrm{k}-2-\mathrm{k}+$ 7) $\}=0$ $\begin{array}{ll} \Rightarrow & \left\{(3 \mathrm{k}-1)(2 \mathrm{k}-5)-2 \mathrm{k}^{2}+5 \mathrm{k}-5\right\}=0 \\ \Rightarrow & 4 \mathrm{k}^{2}-12 \mathrm{k}=0 \\ \Rightarrow & \mathrm{k}=0,3 \end{array}$	$\mathbf{1}^{1} / 2$ $1 / 2$ 1 1 1 1
17	$\begin{aligned} \text { LHS } & =\cot \theta-\tan \theta \\ & =\frac{\cos 0}{\sin 0}-\frac{\sin 0}{\cos 0} \\ & =\frac{\cos ^{2} 0-\sin 0^{2}}{\sin 0 \cos 0} \\ & =\frac{\cos 0-1+\cos 0}{\sin 0} \operatorname{coss}^{2} \\ & =\frac{2 \cos 0-1}{\sin 0 \cos 0}=\text { RHS } \end{aligned}$ OR	$\begin{gathered} 1 \\ 1 / 2 \\ 1 \\ 1 / 2 \end{gathered}$

22	$200-250$ is the modal class $\begin{aligned} \text { Mode } & =l+\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}} \times h \\ & =200+\frac{12-5}{24-5-2} \times 50 \\ & =200+20.59=\text { Rs. } 220.59 \end{aligned}$	$\begin{gathered} \mathbf{1} \\ \mathbf{1} \\ 1 / 2 \\ 1 / 2 \end{gathered}$
	Section D	
23	Let the usual speed of the train be $\mathrm{xkm} / \mathrm{h}$ $\begin{aligned} & \frac{300}{x}-\frac{300}{x+5}=2 \\ \Rightarrow & x^{2}+5 x-750=0 \\ \Rightarrow & (x+30)(x-25)=0 \\ \Rightarrow & x=-30,25 \end{aligned}$ \therefore Usual Speed of the train $=25 \mathrm{~km} / \mathrm{h}$ OR $$	2 1 1 1 1 1 1
24	$\left.\begin{array}{rl} \mathrm{n}=50, \mathrm{a}_{3}=12 \text { and } \mathrm{a}_{50}=106 \\ \mathrm{a}+2 \mathrm{~d}=12 \\ \mathrm{a}+49 \mathrm{~d}=106 \\ \text { on solving, } \mathrm{d}=2 \text { and } \mathrm{a}=8 \end{array}\right\}$	$\begin{gathered} 1 / 2 \\ \mathbf{1} \\ \mathbf{1} \\ 1 / 2 \\ 1 \end{gathered}$
25	Correct given, To prove, figure and construction Correct proof	$\begin{gathered} 1 / 2 \\ \times 4 \\ =2 \\ 2 \end{gathered}$
26	Correct construction of $\triangle \mathrm{ABC}$ Correct construction of similar triangle	$\begin{aligned} & 1 \\ & 3 \end{aligned}$

	In $\triangle \mathrm{BDE}$, $\begin{aligned} & \frac{h+60+60}{x}=\tan 60^{\circ} \\ & h+120=x \sqrt{3} \\ & h+120=h \sqrt{3} \times \sqrt{3} \\ & 2 h=120 \\ & h=60 \end{aligned}$ \therefore height of cloud froN surface of water $=(60+60) \mathrm{N}=120 \mathrm{~N}$			
28	Class Interval	Frequency	cf	1
	0-100	2	2	
	100-200	5	7	
	200-300	X	7+x	
	300-400	12	19+x	
	400-500	17	36+x	
	500-600	20	56+x	
	600-700	y	$56+x+y$	
	700-800	9	$65+\mathrm{x}+\mathrm{y}$	
	800-900	7	$72+x+y$	
	900-1000	4	$76+x+y$	
	$$		(i)	$1 / 2$
	Median $=525 \quad \square 500$	median clas		$1 / 2$
	$60-80$ is the median class			1
	$\begin{aligned} & \text { Median }=1+\frac{{ }^{\frac{n}{2}}-c f}{f^{\prime}} \times h \\ & \Rightarrow 500+\left(\frac{50-36-x)}{20}\right) \times \end{aligned}$	25		1
	$\begin{array}{lc} \Rightarrow & (14-x) \times 5=2 . \\ \Rightarrow & x=9 \\ \Rightarrow & \text { from }(1), y= \end{array}$			
	OR			

