NTSE

NCERT Solutions for Class 9
MATHS - Circles

India's Best 360° Online NTSE Preparation Platform
NTSE | CBSE | State Boards | Class 8th - 10th

1. Fill in the blanks:
(i) The centre of a circle lies in \qquad of the circle. (exterior/ interior)
(ii) A point, whose distance from the centre of a circle is greater than its radius lies in \qquad of the circle. (exterior/ interior)
(iii) The longest chord of a circle is a \qquad of the circle.
(iv) An arc is a \qquad when its ends are the ends of a diameter.
(v) Segment of a circle is the region between an arc and \qquad of the circle.
(vi) A circle divides the plane, on which it lies, in \qquad parts.
Sol. (i) The centre of a circle lies in interior of the circle.
(ii) A point, whose distance from the centre of a circle is greater than its radius lies in exterior of the circle.
(iii) The longest chord of a circle is a diameter of the circle.
(iv) An arc is a semi-circle when its ends are the ends of a diameter.
(v) Segment of a circle is the region between an arc and chord of the circle.
(vi) A circle divides the plane, on which it lies, in two parts.
2. Write True or False: Give reasons for your answers.
(i) Line segment joining the centre to any point on the circle is a radius of the circle.
(ii) A circle has only finite number of equal chords.
(iii) If a circle is divided into three equal arcs, each is a major arc.
(iv) A chord of a circle, which is twice as long as its radius, is a diameter of the circle.
(v) Sector is the region between the chord and its corresponding arc.
(vi) A circle is a plane figure.

Sol. (i) True
(ii) False. Because, there are infinite number of equal chords in a circle.
(iii) False. Because, each arc will make an angle of 120° at the centre. But major arc make angle greater than 180° at the centre.
(iv) True
(v) False.Because, between chord and arc a segment is formed. Sector is the region which is formed between radii and arc.
(vi) True

3. Recall that two circles are congruent if they have the same radii. Prove that equal chords of congruent circles subtend equal angles at their centres.
Sol. Given: Circle $\mathrm{C}(\mathrm{A}, \mathrm{r})$ and $\mathrm{C}(\mathrm{P}, \mathrm{r})$ are two congruent circles such that $\mathrm{BC}=\mathrm{QR}$
To prove: $\angle B A C=\angle Q P R$

Proof: In $\triangle A B C$ and $\triangle P Q R$,
$B C=Q R$
[\because Given]
$A B=P Q$
[\because Radii of congruent circles]
$\mathrm{AC}=\mathrm{PR}$
Hence, $\triangle A B C \cong \triangle P Q R$
[\because Radii of congruent circles]
$[\because$ SSS congruency rule]
$\angle B A C=\angle Q P R$

$$
[\because \mathrm{CPCT}]
$$

4. Prove that if chords of congruent circles subtend equal angles at their centres, then the chords are equal.

Sol. Given: Circle $\mathrm{C}(\mathrm{A}, \mathrm{r})$ and $\mathrm{C}(\mathrm{P}, \mathrm{r})$ are two congruent circles such that $\angle B A C=\angle Q P R$.
To prove: $\mathrm{BC}=\mathrm{QR}$

Proof: In $\triangle A B C$ and $\triangle P Q R, A B=P Q$
$\angle B A C=\angle Q P R$
$A C=P R$
Hence, $\triangle A B C \cong \triangle P Q R$
$\mathrm{BC}=\mathrm{QR}$

[\because Radii of congruent circles]
[\because Given]
[\because Radii of congruent circles]
[\because SAS Congruency rule]
$[\because \mathrm{CPCT}]$

I still wonder haw one man has such a deep understanding of an examination. It becomes the truth what er Viper fir says about NTSE
5. Draw different pairs of circles. How many points does each pair have in common? What is the maximum number of common points?
Sol.

(i)

(ii)

(iii)

(iv)

In each pair either 0 or 1 or 2 points are common. The maximum number of common points is 2 .
6. Suppose you are given a circle. Give a construction to find its centre.

Sol. Given: P, Q and R lies on circle $\mathrm{C}(\mathrm{O}, \mathrm{r})$.

Construction:

$>$ Join PR and QR.
$>$ Draw the perpendicular bisectors of PR and QR which intersects at point O .
$>$ Taking O as centre and OP as radius, draw a circle.
$>$ This is the required circle.
7. If two equal chords of a circle intersect within the circle, prove that the segments of one chord are equal to corresponding segments of the other chord.
Sol. Given: In circle $C(0, r)$, equal chords $A B$ and $C D$ intersects at P.
To prove: $\mathrm{AP}=\mathrm{CP}$ and $\mathrm{BP}=\mathrm{DP}$
Construction: Join OP. Draw $\mathrm{OM} \perp \mathrm{AB}$ on $\mathrm{ON} \perp \mathrm{CD}$.
Proof: In $\triangle \mathrm{OMP}$ and $\triangle \mathrm{ONP}$,

Unburden

$\angle \mathrm{OMP}=\angle \mathrm{ONP}$
$O P=O P$
$\mathrm{OM}=\mathrm{ON}$
Hence, $\triangle O M P \cong \triangle O N P$
$\mathrm{PM}=\mathrm{PN}$
and $\mathrm{AB}=\mathrm{CD}$
$\left[\because\right.$ Each $\left.90^{\circ}\right]$
[\because Common]
[\because Equal chords of a circle are equidistant from the centre]
[\because RHS Congruency rule]
$[\because$ CPCT]
$[\because$ Given $]$
$\Rightarrow \frac{1}{2} A B=\frac{1}{2} C D$
$\Rightarrow A M=C N$
Adding the equations (1) and (3), we have
$\mathrm{AM}+\mathrm{PM}=\mathrm{CN}+\mathrm{PN}$
$\Rightarrow A P=C P$
Subtracting equation (4) from (2), we have
$A B-A P=C D-C P$
$\Rightarrow P B=P D$
8. In Figure, A, B and C are three points on a circle with centre O such that $\angle B O C=30^{\circ}$ and $\angle A O B=60^{\circ}$. If D is a point on the circle other than the arc ABC , find $\angle A D C$.

A Team that made Cracking NTSE Easier Than Ever

Sol. $\angle A O C=\angle A O B+\angle B O C=60^{\circ}+30^{\circ}=90^{\circ}$
$\angle A O C=2 \angle A D C$
[\because The angle subtended by an arc at the centre is double the angle subtended by it at any part of the circle.]
$\Rightarrow \angle A D C=\frac{1}{2} \angle A O C \Rightarrow A D C=\frac{1}{2} \times 90^{\circ}=45^{\circ}$
9. Prove that the line of centres of two intersecting circles subtends equal angles at the two points of intersection.

Sol. Given: Circle $\mathrm{C}(\mathrm{P}, \mathrm{r})$ and Circle $\mathrm{C}\left(\mathrm{Q}, \mathrm{r}^{\prime}\right)$ intersects each other at A and B.
To prove: $\angle P A Q=\angle P B Q$
Proof: In $\triangle A P Q$ and $\triangle B P Q$,

$P Q=P Q$
$P A=P B$
$[\because$ Common]
[\because Radii of same circle]
$[\because$ Radii of same circle $]$
$[\because$ SSS Congruency rule]
$\mathrm{QA}=\mathrm{QB}$
Therefore, $\triangle A P Q \cong \triangle B P Q$
$[\because \mathrm{CPCT}]$
Hence, $\angle P A Q=\angle P B Q$
10. In any triangle ABC , if the angle bisector of $\angle A$ and perpendicular bisector of BC intersect, prove that they intersect on the circumcircle of the triangle ABC .
Sol. Given: In triangle ABC , bisector of $\angle A$ meet the circumcircle of triangle ABC at D .
To prove: D lies on perpendicular bisector of BC .
Construction: Join BD and DC.
Proof: $\angle 1$ and $\angle 3$ lies in the same segment. Therefore

$\angle 1=\angle 3$
Similarly $\angle 2=\angle 4$
And, $\angle 1=\angle 2$
$[\because$ Angles in the same segment are equal]
[\because Given] [Angle bisector]

From the equation (1), (2) and (3), we have $\angle 3=\angle 4$
Hence, $B D=D C \quad[\because$ In an isosceles triangle, angles opposite to equal sides are equal] All the points lying perpendicular bisector of BC will be equidistant from B and C .
Hence, the point D also lies on perpendicular bisector of BC .

For complete NCERT Solutions visit www.ntseguru.in \& take a free demo.

Or

Download NTSE GURU Android App for free from Google Playstore.

© Subscribe to

NTSEguru You(tub Channel

