NCERT Solutions for Class 9 MATHS – Number Systems

India's Best 360° Online NTSE Preparation Platform NTSE | CBSE | State Boards | Class 8th - 10th

- 1. Is zero a rational number? Can you write it in the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$?
- **Sol.** Yes. Zero is a rational number as it can be represented as $\frac{0}{1}$ or $\frac{0}{2}$ or $\frac{0}{3}$ etc.
- 2. Find six rational numbers between 3 and 4.
- Sol. There are infinite rational numbers in between 3 and 4.

3 and 4 can be represented as $\frac{21}{7}$ and $\frac{28}{7}$ respectively.

Therefore, rational numbers between 3 and 4 are

 $\frac{22}{7}, \frac{23}{7}, \frac{24}{7}, \frac{25}{7}, \frac{26}{7}, \frac{27}{7}$

3. State whether the following statements are true or false. Justify your answers.

(i) Every irrational number is a real number.

(ii) Every point on the number line is of the form \sqrt{m} , where m is a natural number.

(iii) Every real number is an irrational number.

- Sol. (i) True; since the collection of real numbers is made up of rational and irrational numbers.
 (ii) False; as negative numbers cannot be expressed as the square root of any other number.
 (iii) False; as real numbers include both rational and irrational numbers. Therefore, every real number cannot be an irrational number.
- **4.** Are the square roots of all positive integers irrational? If not, give an example of the square root of a number that is a rational number.
- Sol. If numbers such as $\sqrt{4} = 2$, $\sqrt{9} = 3$ are considered, Then here, 2 and 3 are rational numbers. Thus, the square roots of all positive integers are not irrational.
- 5. Write the following in decimal form and say what kind of decimal expansion each has :

(i) $\frac{36}{100}$ (ii) $\frac{1}{11}$ (iii) $4\frac{1}{8}$ (iv) $\frac{3}{13}$ (v) $\frac{2}{11}$ (vi) $\frac{329}{400}$

Sol. (i) $\frac{36}{100} = 0.36$ Terminating. (ii) $\frac{1}{11} = 0.\overline{09}$, Recurring & Non-terminating. (iii) $4\frac{1}{8} = 4.125$, Terminating. (iv) $\frac{3}{13} = 0.\overline{230769}$, Recurring & Non-terminating. (v) $\frac{2}{11} = 0.\overline{18}$, Recurring & Non-terminating. (vi) $\frac{329}{400} = 0.8225$, Terminating.

- 6. You know that $\frac{1}{7} = 0.\overline{142857}$ Can you predict what the decimal expansions of $\frac{3}{2}, \frac{3}{7}, \frac{4}{7}, \frac{5}{7}, \frac{6}{7}$ are, without actually doing the long division? If so, how? [Hint: Study the remainders while finding the value of $\frac{1}{7}$ carefully.]
- **Sol.** Without actual long division, the decimal expansions of $\frac{2}{7}, \frac{3}{7}, \frac{4}{7}, \frac{5}{7}, \frac{6}{7}$ are as follows:

$$\frac{2}{7} = 2 \times \frac{1}{7} = 2 \times 0.\overline{142857} = 0.\overline{285714}$$

$$\frac{3}{7} = 3 \times \frac{1}{7} = 3 \times 0.\overline{142857} = 0.\overline{428571}$$

$$\frac{4}{7} = 4 \times \frac{1}{7} = 4 \times 0.\overline{142857} = 0.\overline{571428}$$

$$\frac{5}{7} = 5 \times \frac{1}{7} = 5 \times 0.\overline{142857} = 0.\overline{7142857}$$

$$\frac{6}{7} = 6 \times \frac{1}{7} = 6 \times 0.\overline{142857} = 0.\overline{857142}$$

7. Express the following in the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$. (i) $0.\overline{6}$ (ii) $0.\overline{47}$ (iii) $0.\overline{001}$ Sol. (i) $0.\overline{6}$ Let $x = 0.\overline{6}$ $\Rightarrow x = 0.6666...$ (i)

Multiplying equation (i) by 10 both sides 10x = 6.6666...10x = 6 + 0.6666... \Rightarrow 10x = 6 + x[From equation (i)] \Rightarrow 10x - x = 6 \Rightarrow 9x = 6 \Rightarrow $x = \frac{6}{9} = \frac{2}{3}$ (ii) 0.47 Let $x = 0.\overline{47}$ *x* = 0.47777... ...(i) Multiplying equation (i) by 10 both sides $\Rightarrow 10x = 4.7777...$...(ii) Multiplying equation (ii) by 10 both sides 100x = 47.7777... \Rightarrow 100*x* = 43 + 4.7777... \Rightarrow 100x = 43 + 10x [From equation (ii)] \Rightarrow 100x - 10x = 43 \Rightarrow 90x = 43 $\Rightarrow x = \frac{43}{90}$ (iii) 0.001 Let x = 0.001 $\Rightarrow x = 0.001001001...$...(i) Multiplying equation (i) by 1000 both sides 1000x = 1.001001001...1000x = 1 + 0.001001001... \Rightarrow 1000x = 1 + x \Rightarrow [From equation (i)] 1000x - x = 1 \Rightarrow 999x = 1 $\Rightarrow x = \frac{1}{999}$

8. Express 0.99999.... in the form $\frac{p}{q}$. Are you surprised by your answer? With your teacher and classmates

discuss why the answer makes sense.

Sol. 0.999999...

Let x = 0.99999... ...(1) Multiplying equation (i) by 10 both sides 10x = 9.99999...

Unburden the parents of your Study Expenses

Govt. of India provides vou scholars

provides you scholarship till Post Graduation studies after your crack NTSE exam

Login to **ntseguru.in** for best NTSE Preparation

 $\Rightarrow 10x = 9 + 0.999999...$ $\Rightarrow 10x = 9 + x \qquad [From equation (i)]$ $\Rightarrow 10x - x = 9$ $\Rightarrow 9x = 9$ $\Rightarrow x = \frac{9}{9} = 1$

The answer makes sense as 0.999999... is very close to 1, that is why we can say that 0.999999 = 1.

- 9. Classify the following numbers as rational or irrational:
- (iii) $\frac{2\sqrt{7}}{7\sqrt{7}}$ (ii) $(3+\sqrt{23})-\sqrt{23}$ (i) $2 - \sqrt{5}$ (iv) $\frac{1}{\sqrt{2}}$ (v) 2π (i) $2 - \sqrt{5}$ Irrational number. Sol. (ii) $(3 - \sqrt{23}) - \sqrt{23} = 3$ Rational number. (iii) $\frac{2\sqrt{7}}{7\sqrt{7}} = \frac{2}{7}$ Rational number. (iv) $\frac{1}{\sqrt{2}}$ Irrational number. (v) 2π Irrational number. 10. Find: (i) $64^{\frac{1}{2}}$ (ii) $32^{\frac{1}{5}}$ (iii) $125^{\bar{3}}$ **Sol.** (i) $64^{\frac{1}{2}} = (8^2)^{\frac{1}{2}} = 8^{2\times \frac{1}{2}} = 8$ ru.in (ii) $32^{\frac{1}{5}} = (2^5)^{\frac{1}{5}} = 2^{5 \times \frac{1}{5}} = 2$ (iii) $125^{\frac{1}{3}} = (5^3)^{\frac{1}{3}} = 5^{3\times\frac{1}{3}} = 5$

For complete NCERT Solutions visit <u>www.ntseguru.in</u> & take a free demo.

Or

Download NTSE GURU Android App for free from Google Playstore.

A Team that made —
 Cracking NTSE
 Easier Than Ever

