NTSE

NCERT Solutions for Class 9
MATHS - Linear Equation in Two variables

India's Best 360° Online NTSE Preparation Platform
NTSE | CBSE | State Boards | Class 8th - 10th

1. The cost of a notebook is twice the cost of a pen. Write a linear equation in two variables to represent this statement.
(Take the cost of a notebook to be Rs. x and that of a pen to be Rs. y).
Sol. Let the pen cost y and the notebook $\operatorname{cost} x$.
A / q (according to question):
Notebook price $=2($ pen price $)$

$$
\begin{aligned}
& \therefore 2 y=x \\
& \Rightarrow x-2 y=0 .
\end{aligned}
$$

2. Which one of the following options is true, and why?
$y=3 x+5$ has
(i) a unique solution,
(ii) only two solutions,
(iii) infinitely many solution

Sol. (iii) Infinitely many solution
Because a line has infinite many points and each point is a solution of the linear equation.
3. Write four solutions for each of the following equations:
(i) $2 x+y=7$
(ii) $\pi x+y=9$
(iii) $x=4 y$

Sol. (i) $2 x+y=7 \Rightarrow y=7-2 x$
Putting $x=0$, we have, $y=7-2 \times 0=7$,
Putting $x=1$, we have, $y=7-2 \times 1=5$,
Putting $x=2$, we have, $y=7-2 \times 2=3$,
Putting $x=3$, we have, $y=7-2 \times 3=1$,
therefore, $(0,7)$ is a solution of the equation. therefore, $(1,5)$ is a solution of the equation. therefore. $(2,3)$ is a solution of the equation. therefore, $(3,1)$ is a solution of the equation.

Hence, $(0,7),(1,5),(2,3)$ and $(3,1)$ are the four solutions of the equation $2 x+y=7$.
(ii) $\pi x+y=9 \Rightarrow y=9-\pi x$

Putting $x=0$, we have, $y=9-\pi \times 0=9$, therefore, $(0,9)$ is a solution of the equation.
Putting $x=2$, we have, $y=9-\pi \times 1=9-\pi$,
Putting $x=2$, we have, $y=9-\pi \times 2=9-2 \pi$,
Putting $x=3$, we have, $y=9-\pi \times 3=9-3 \pi$ therefore, $(1,9-\pi)$ is a solution of the equation. therefore, $(2,9-2 \pi)$ is a solution of the equation. therefore, $(3,9-3 \pi)$ is a solution of the equation.
Hence, $(0,9),(1,9-\pi),(2,9-2 \pi)$ and $(3,9-3 \pi)$ are the four solutions of the equation $\pi x+y=9$.

Download

NTSECURU Mobile App
FREE from

(iii) $x=4 y$

Putting $y=0$ we have, $x=4 \times 0=0$,
Putting $\mathrm{y}=1$, we have, $x=4 \times 1=4$,
Putting $y=2$, we have, $x=4 \times 2=8$,
Putting $\mathrm{y}=3$, we have, $x=4 \times 3=12$,
therefore, $(0,0)$ is a solution of the equation. therefore, $(4,1)$ is a solution of the equation. therefore, $(8,2)$ is a solution of the equation. therefore, $(12,3)$ is a solution of the equation.
Hence, $(0,0),(4,1),(8,2)$ and $(12,3)$ are the four solutions of the equation $x=4 y$.
4. Draw the graph of each of the following linear equations in two variables:
(i) $x+y=4$
(ii) $x-y=2$
(iii) $y=3 x$
(iv) $3=2 x+y$

Sol. (i) $x+y=4$
$\Rightarrow y=4-x$
Putting $x=0$, we have, $y=4-0=4$
Putting $x=1$, we have $y=4-1=3$
Hence, $A(0,4)$ and $B(1,3)$ are the solutions of the equation.
(ii) $x-y=2$
$\Rightarrow y=x-2$
Putting $x=0$, we have $y=0-2=-2$
Hence, $C(0,-2)$ and $D(1,-1)$ are the solutions of the equation.
(iii) $y=3 x$

Putting $x=0$, we have, $y=3 \times 0=0$
Putting $x=1$, we have, $y=3 \times 1=3$
Hence, $\mathrm{E}(0,0)$ and $\mathrm{B}(1,3)$ are the solutions of the equation.
(iv) $3=2 x+y$
$\Rightarrow y=3-2 x$
Putting $x=0$, we have $y=3-2 \times 0=3$
Putting $x=1$, we have $y=3-2 \times 1=1$
Hence, $\mathrm{G}(0,3)$ and $\mathrm{H}(1,1)$ are the solutions of the equation.

5. Give the equations of two lines passing through $(2,14)$. How many more such lines are there, and why?

Sol. Equation of two lines passing through $(2,14)$ are given by: $x+y=16$ and $8 x-y=2$.
There are infinite number of lines that can pass through $(2,4)$ as infinite number of lines passes through a point.
6. If the point $(3,4)$ lies on the graph of the equation $3 y=a x+7$, find the value of a.

Sol. Given equation of line: $3 y=a x+7$.
Putting $x=3$ and $y=4$, we have $3 \times 4=a \times 3+7$
$\Rightarrow 12=3 a+7 \quad \Rightarrow 12-7=3 a$
$\Rightarrow a=\frac{5}{3}$

Unburden the parents of your Study Expenses

Govt. of India
provides you scholarship till Post Graduation studies after your crack NTSE exam

7. The taxi fare in a city is as follows: For the first kilometre, the fare is Rs. 8 and for the subsequent distance it is Rs. 5 per km.. Taking the distance covered as x km and total fare as Rs.y, write a linear equation for this information, and draw its graph.
Sol. Given that: Distance travelled $=x k m$ and total fare $=$ Rs. y
Total fare $=$ Fare for first $\mathrm{km}+$ Fare for remaining distance
Therefore, the equation: $y=8+5 \times(x-1) \Rightarrow y=5 x+3$
For the graph
Putting $x=1$, we have $y=5 \times 1+3=8$
Putting $x=2$, we have $y=5 \times 2+3=13$
Putting $x=3$, we have $y=5 \times 3+3=18$
Hence, $\mathrm{A}(1,8), \mathrm{B}(2,13)$ and $\mathrm{C}(3,18)$ are solutions of the equation.

A Team that made Cracking NTSE Easier Than Ever
8. Yamini and Fatima, two students of Class IX of a school, together contributed Rs. 100 towards the Prime Minister's Relief Fund to help the earthquake victims. Write a linear equation which satisfies this data. (You may take their contributions as Rs. x and Rs. y.) Draw the graph of the same.

Sol.

Let the contribution by Yamini $=$ Rs. $\mathrm{x} \quad$ [Taken on X-axis]
Let the contribution by Fatima $=R s . y \quad$ [Taken on Y-axis]
According to question, $x+y=100$
$\Rightarrow y=100-x$ For the graph:

Putting $x=0$, we have, $y=100-0=100$
Putting $x=10$, we have, $y=100-10=90$
Putting $x=20$, we have, $y=100-20=80$
Hence, $\mathrm{A}(0,100), \mathrm{B}(10,90)$ and $\mathrm{C}(20,80)$ are the solutions of equation.
9. In countries like USA and Canada, temperature is measured in Fahrenheit, whereas in countries like India, it is measured in Celsius. Here is a linear equation that converts Fahrenheit to Celsius:

$$
\mathrm{F}=\left(\frac{9}{5}\right) C+32
$$

(i) Draw the graph of the linear equation above using Celsius for x -axis and Fahrenheit for y -axis.
(ii) If the temperature is $30^{\circ} \mathrm{C}$, what is the temperature in Fahrenheit?
(iii) If the temperature is $95^{\circ} \mathrm{F}$, what is the temperature in Celsius?
(iv) If the temperature is $0^{\circ} \mathrm{C}$, what is the temperature in Fahrenheit and if the temperature is $0^{\circ} \mathrm{F}$, what is the temperature in Celsius?
(v) Is there a temperature which is numerically the same in both Fahrenheit and Celsius? If yes, find it.

Sol.

(i) Taking Celsius on x-axis and Fahrenheit on y-axis, the linear equation is given by:
$y=\left(\frac{9}{5}\right) x+32$
For plotting the graph:

Putting $x=0$, we have, $y=\left(\frac{9}{5}\right) \times 0+32=32$

Putting $x=5$, we have, $y=\left(\frac{9}{5}\right) \times 5+32=41$
Putting $x=10$, we have, $y=\left(\frac{9}{5}\right) \times 10+32=50$
Hence, $\mathrm{A}(0,100), \mathrm{B}(5,41)$ and $\mathrm{C}(10,50)$ are the solutions of the equation.
(ii) If the temperature is $30^{\circ} \mathrm{C}$, then
$\mathrm{F}=\left(\frac{9}{5}\right) \times 30+32=54+32=86$
Hence, if the temperature is $30^{\circ} \mathrm{C}$, the temperature in Fahrenheit is $86^{\circ} \mathrm{F}$.

OSubscribe to

(iii) If the temperature is $95^{\circ} \mathrm{F}$, then
$95=\left(\frac{9}{5}\right) C+32$
$\Rightarrow 95-32=\left(\frac{9}{5}\right) C$
$\Rightarrow 63 \times \frac{5}{9}=C$
$\Rightarrow C=35^{\circ}$
If the temperature is $95^{\circ} \mathrm{F}$, the temperature in Celsius is $35^{\circ} \mathrm{C}$.
(iv) If temperature is $0^{\circ} \mathrm{C}$, then
$F=\left(\frac{9}{5}\right) \times 0+32=0+32=32$
If the temperature is $0^{\circ} \mathrm{F}$, then
$0=\left(\frac{9}{5}\right) C+32$
$\Rightarrow-32=\left(\frac{9}{5}\right) \mathrm{C}$
$\Rightarrow-32 \times \frac{5}{9}=\mathrm{C}$
$\Rightarrow-\frac{160}{9}=\mathrm{C}$
$\Rightarrow \mathrm{C}=-17.8^{\circ}$
If the temperature is $0^{\circ} \mathrm{C}$, the temperature in Fahrenheit is $32^{\circ} \mathrm{F}$ and if the temperature is $0^{\circ} \mathrm{F}$, the temperature in Celsius is $-17.8^{\circ} \mathrm{C}$.
(v) Let x° be the temperature which is numerically the same in both Fahrenheit and Celsius, then
$x=\left(\frac{9}{5}\right) x+32$
$\Rightarrow x-32=\left(\frac{9}{5}\right) x$
$\Rightarrow(x-32) \times 5=9 x$
$\Rightarrow 5 x-160=9 x$
$\Rightarrow 4 x=-160$
$\Rightarrow x=-40$
Hence, -40° is the temperature which is numerically the same in both Fahrenheit and Celsius.

© Subscribe to

10. Give the geometric representations of $y=3$ as an equation
(i) in one variable
(ii) in two variables

Sol. (i) Equation $y=3$ can be represented in one variable on number line.

(ii) For two variables representation of $y=3$, we will use Cartesian plane. Now the equation:
0. $x+y=3$
$\Rightarrow y=3-0 . x$
Putting $x=1$, we have, $y=3-0.1=3$
Putting $x=2$, we have $y=3-0.2=3$
Hence, $\mathrm{A}(1,3)$ and $\mathrm{B}(2,3)$ are the two solutions of the given equation.

11. Give the geometric representations of $2 x+9=0$ as an equation
(i) in one variable
(ii) in two variables

Sol. (i) To represent the equation $2 x+9=0$ in one variable, we will use number line.

$$
\begin{aligned}
& 2 x+9=0 \\
& \Rightarrow x=-\frac{9}{2}
\end{aligned}
$$

(ii) To represent the equation $2 x+9=0$ in two variable, we will use Cartesian plane. Now the equation: $2 x+0 . y=-9$
$\Rightarrow x=\frac{-9-0 . y}{2}$

An
 NTSE Scholar
 IIT-JEE (Adv.) AIR-3
 Mukesh Pareek

Putting $y=1$, we have $x=\frac{-9-0 \times 1}{2}=-\frac{9}{2}$
Putting $y=2$, we have $x=\frac{-9-0 \times 2}{2}=-\frac{9}{2}$
Hence, $A\left(-\frac{9}{2}, 1\right)$ and $B\left(-\frac{9}{2}, 2\right)$ are the two solutions of the given equation.

For complete NCERT Solutions visit www.ntseguru.in \& take a free demo. Or

Download NTSE GURU Android App for free from Google Playstore.

A Team that made Cracking NTSE Easier Than Ever

