NTSE

NCERT Solutions for Class 9
MATHS - Lines and Angles

India's Best 360° Online NTSE Preparation Platform
NTSE | CBSE | State Boards | Class 8th - 10th

1. In Figure, lines AB and CD intersect at O . If $\angle A O C+\angle B O E=70^{\circ}$ and $\angle B O D=40^{\circ}$, find $\angle B O E$ and reflex $\angle C O E$.

Sol. Lines AB and CD intersect at O

$$
\therefore \quad \angle A O C=\angle B O D
$$

Angles]
But $\angle B O D=40^{\circ}$
[Given]
$\therefore \quad \angle A O C=40^{\circ}$
Now, $\angle A O C+\angle B O E=70^{\circ}$
$\Rightarrow \quad 40^{\circ}+\angle B O E=70^{\circ}$
[Using (2) $\left.\Rightarrow \angle B O E=70^{\circ}-40^{\circ}\right]$
$\Rightarrow \quad \angle B O E=30^{\circ}$
Again, reflex $\angle C O E=\angle C O D+\angle B O D+\angle B O E$

$$
\begin{aligned}
& =\angle C O D+40^{\circ}+30^{\circ} \ldots . \\
& =180^{\circ}+40^{\circ}+30^{\circ}=250^{\circ}
\end{aligned}
$$

2. In figure, $\angle P Q R=\angle P R Q$, then prove that $\angle P Q S=\angle P R T$.

Sol. Ray $Q P$ stands on line $S T$
$\therefore \quad \angle P Q S+\angle P Q R=180^{\circ}$
Ray RP stands on line ST
$\therefore \quad \angle P R Q+\angle P R T=180^{\circ}$
[Linear Pair Axiom]

From (1) and (2), we obtain

$$
\begin{aligned}
& \angle P Q S+\angle P Q R=\angle P R Q+\angle P R T \\
& \Rightarrow \quad \angle P Q S=\angle P R T \\
& \quad \quad[\text { Since }, \angle P R Q=\angle \mathrm{PQR} \text { given] }
\end{aligned}
$$

Download

NTSECURU Mobile App
FREE from
3. In Figure, if $x+y=w+z$, then prove that AOB is a line.

Sol. $x+y=w+z$
[Given \therefore The sum of all the angles round a point is equal to 360°]
$\therefore \quad x+y+w+z=360^{\circ}$
$\Rightarrow \quad x+y+x+y=360^{\circ} \quad[\mathrm{Using}(1)]$
$\Rightarrow \quad 2(x+y)=360^{\circ}$
$\Rightarrow \quad x+y=180^{\circ}$
$\therefore \quad A O B$ is a line.
4. In Figure, if $A B \| C D, E F \perp C D$ and $\angle G E D=126^{\circ}$, find $\angle A G E, \angle G E F$ and $\angle F G E$.

Sol. (i) $\angle A G E=\angle G E D=126^{\circ}$
[Alternate interior Angles]
(ii) $\angle G E D=126^{\circ}$
$\Rightarrow \quad \angle G E F+\angle F E D=126^{\circ}$
$\Rightarrow \quad \angle G E F+90^{\circ}=126^{\circ}$
[Since, $E F \perp C D$ and $\angle F E D=90^{\circ}$]
$\Rightarrow \quad \angle G E F=126^{\circ}-90^{\circ}=36^{\circ}$

I still wader has core men has such a deep undrutarcing of on examination. It becomes

$A n$

NTSE Scholar
IIT-JEE (Adv.) AIR-3
(iii) $\angle G E C+\angle G E F+\angle F E D=180^{\circ}$
[CD is a line]
$\Rightarrow \quad \angle G E C+36^{\circ}+90^{\circ}=180^{\circ}$
$\Rightarrow \quad \angle G E C+126^{\circ}=180^{\circ}$
$\Rightarrow \quad \angle G E C=180^{\circ}-126^{\circ}=54^{\circ}$
Now, $\angle F G E=\angle G E C=54^{\circ}$
5. In Figure, if $A B \| C D, \angle A P Q=50^{\circ}$ and $\angle P R D=127^{\circ}$, find x and y.

Sol. $x=\angle A P Q=50^{\circ}$
[Alternate Interior Angles]
$\angle P R D=x+y=127^{\circ}$
[Sum of the two Interior opposite Angles]
$\Rightarrow \quad 50^{\circ}+y=127^{\circ}$
[Exterior angle]
$\Rightarrow \quad y=127^{\circ}-50^{\circ}$
$\Rightarrow \quad y=77^{\circ}$
6. In Figure, PQ and RS are two mirrors placed parallel to each other. An incident ray AB strikes the mirror PQ at B , the reflected ray moves along the path BC and strikes the mirror RS at C and again reflects back along CD. Prove that $A B \| C D$.

Sol. Construction : Draw ray $B L \perp P Q$ and ray $C M \perp R S$.

Unburden the parents of your Study Expenses

Govt. of India
provides you scholarship till Post Graduation studies after your crack NTSE exam

Proof : $B L \perp P Q, C M \perp R S$ and $P Q \| R S$
$\therefore \quad B L \| C M$
$\angle L B C=\angle M C B$
[Alternate Interior Angles $\angle A B L=\angle L C B$
(2)
[Angle of incidence $=$ Angle of reflection]

$$
\begin{equation*}
\angle M C B=\angle M C D \tag{3}
\end{equation*}
$$

[Angle of incidence $=$ Angle of reflection]
From (1), (2) and (3), we get $\angle A B L=\angle M C D$ \qquad
Adding (1) and (4), we get

$$
\begin{aligned}
& \angle L B C+\angle A B L=\angle M C B+\angle M C D \\
& \Rightarrow \quad \angle A B C=\angle B C D
\end{aligned}
$$

But these are alternate interior angles and they are equal.
So, $A B \| C D$.
7. In Figure, sides QP and RQ of $\triangle P Q R$ are produced to points S and T respectively. If $\angle S P R=135^{\circ}$ and $\angle P Q T=110^{\circ}$, find $\angle P R Q$.

- A Team that made Cracking NTSE Easier Than Ever

Sol. TR is a line $\angle P Q T+\angle P Q R=180^{\circ}$
$\Rightarrow \quad 110^{\circ}+\angle P Q R=180^{\circ}$
$\Rightarrow \quad \angle P Q R=180^{\circ}-110^{\circ}=70^{\circ}$
(1) \quad QS is a line
$\therefore \quad \angle S P R+\angle Q P R=180^{\circ}$
$\Rightarrow \quad 135^{\circ}+\angle Q P R=180^{\circ}$
$\Rightarrow \quad \angle Q P R=180^{\circ}-135^{\circ}=45^{\circ}$
In $\triangle P Q R, \angle P Q R+\angle Q P R+\angle P R Q=180^{\circ}$
[The sum of all the angles of a triangle is 180°]
$\Rightarrow \quad 70^{\circ}+45^{\circ}+\angle P R Q=180^{\circ} \quad[$ Using (1) and (2)]
$\Rightarrow \quad 115^{\circ}+\angle P R Q=180^{\circ}$
$\Rightarrow \quad \angle P R Q=180^{\circ}-115^{\circ}=65^{\circ}$
8. In Figure, if $A B \| D E, \angle B A C=35^{\circ}$ and $\angle C D E=53^{\circ}$, find $\angle D C E$.

Sol. $\angle D E C=\angle B A C=35^{\circ}$
[Alternate Interior Angles]
$\angle C D E=53^{\circ}$
[Given]
In $\triangle C D E, \angle C D E+\angle D E C+\angle D C E=180^{\circ}$
[The sum of all the angles of a triangle is 180°.]
$\Rightarrow \quad 53^{\circ}+35^{\circ}=\angle C D E+\angle D E C$
$\Rightarrow \quad 88^{\circ}+\angle D C E=180^{\circ}$
$\Rightarrow \quad \angle D C E=180^{\circ}-88^{\circ}=92^{\circ}$
9. In Figure, if $P Q \perp P S, P Q \| S R, \angle S Q R=28^{\circ}$ and $\angle Q R T=65^{\circ}$, then find the values of x and y.

Sol. $\quad \angle Q R T=\angle R S T+\angle Q S R$
[The exterior angle is equal to the sum of the two interior opposite angles]
$\Rightarrow \quad 65^{\circ}=28^{\circ}+\angle Q S R$
$\Rightarrow \quad \angle Q S R=65^{\circ}-28^{\circ}=37^{\circ}$
$\Rightarrow \quad P Q \perp S P$
$\Rightarrow \quad \angle Q P S=90^{\circ}$
$\therefore \quad P Q \| S R$
$\therefore \quad \angle Q P S+\angle P S R=180^{\circ}$
[The sum of consecutive interior angles on the same side of the transversal is 180°]
$\Rightarrow \quad 90^{\circ}+\angle P S R=180^{\circ}$
$\Rightarrow \quad \angle P S R=180^{\circ}-90^{\circ}=90^{\circ}$
$\Rightarrow \quad \angle P S Q+\angle Q S R=90^{\circ}$
$\Rightarrow \quad y+37^{\circ}=90^{\circ}$
$\Rightarrow \quad y=90^{\circ}-37^{\circ}=53^{\circ}$
In $\triangle P Q S, \angle P Q S+\angle Q S P+\angle Q P S=180^{\circ}$
[The sum of all the angles of a triangle is 180°]
$\Rightarrow \quad x+y+90^{\circ}=180^{\circ}$
$\Rightarrow \quad x+53^{\circ}+90^{\circ}=180^{\circ}$
$\Rightarrow \quad x+143^{\circ}=180^{\circ}$
$\Rightarrow \quad x=180^{\circ}-143^{\circ}=37^{\circ}$.

OSubscribe to
10. In Figure, the side QR of $\triangle P Q R$ is produced to a point S . If the bisectors of $\angle P Q R$ and $\angle P R S$ meet at point T , then prove that $\angle Q T R=\frac{1}{2} \angle Q P R$.

Sol. $\quad \angle T R S$ is an exterior angle of $\triangle T Q R$

$\angle T R S=\angle T Q R+\angle Q T R$
[Since, the exterior angle is equal to the sum of the two interior opposite angles.]
$\therefore \quad \angle P R S$ ia an exterior angle of $\triangle P Q R$
$\angle P R S=\angle P Q R+\angle Q P R$
[Since, the exterior angle is equal to the sum of the two interior opposite angles.]

$$
\Rightarrow \quad 2 \angle T R S=2 \angle T Q R+\angle Q P R
$$

[QT is the bisector of $\angle P Q R$ and RT is the bisector of $\angle P R S$]
$\Rightarrow \quad 2(\angle T R S-\angle T Q R)=\angle Q P R$
From (1), $\angle T R S-\angle T Q R=\angle Q T R$
From (3) and (4), we obtain

$$
\begin{aligned}
& 2 \angle Q T R=\angle Q P R \\
\Rightarrow \quad & \angle Q T R=\frac{1}{2} \angle Q P R .
\end{aligned}
$$

Hence proved.

For complete NCERT Solutions visit www.ntseguru.in \& take a free demo. Or

Download NTSE GURU Android App for free from Google Playstore.
© Subscribe to
Vipinomics Yourtie Channel
for more videos of Vipin Sir

