NCERT Solutions for Class 9 MATHS – Triangles

India's Best 360° Online NTSE Preparation Platform

- 1. ABCD is a quadrilateral in which AD = BC and $\angle DAB = \angle CBA$ (see figure). Prove that
 - (i) $\Delta ABD \cong \Delta BAC$
 - (ii) BD = AC
 - (iii) $\angle ABD = \angle BAC.$

D

Sol. Given : ABCD is a quadrilateral in which AD = BC and $\angle DAB = \angle CBA$.

To prove :

- (i) $\Delta ABD \cong \Delta BAC$
- (ii) BD = AC
- (iii) $\angle ABD = \angle BAC$.

Proof	:	(i)	In $\triangle ABD$	and ΔBAC ,
		AD =	= BC	[Given]
		AB =	BA	[AB is given]
		∠DA	$B = \angle CBA$	[Given]
	÷	ΔAB	$D \cong \Delta BAC$	[SAS criterion]
(ii)	In ΔA	$BD\cong \Delta$	ABAC	
	$\angle DA$	$B = \angle C$	CBA	
	÷	BD =	= AC	[CPCT]
(iii)	ΔABI	$D = \Delta B_{\mu}$	AC	
	AD =	BC		[Given]
	<i>.</i>	$\angle AB$	$D = \angle BAC$	[CPCT]

Iru.in

E

D

C

2. AD and BC are equal perpendiculars to a line segment AB (see Figure). Show that CD bisects AB.

Sol. Given : AD and BC are equal perpendiculars to a line segment AB. To Prove : CD bisects AB.

Proof :	In $\triangle OAD$ and $\triangle OBC$		
	AD = BC	[Given]	
	$\angle OAD = \angle OBC$	$[Each = 90^{\circ}]$	
	$\angle AOD = \angle BOC$	[Vertically Opposite Angles]	
	$\Delta OAD \cong \Delta OBC$	[AAS rule]	
	OA = OB	[CPCT]	
	CD bisects AB.		

3. In Figure, AC = AE, AB = AD and $\angle BAD = \angle EAC$. Show that BC = DE.

Sol. Given : In figure, AC = AE, AB = AD and $\angle BAD = \angle EAC$. To Prove : BC = DE. Proof : In $\triangle ABC$ and $\triangle ADE$, AB = AD [Given] AC = AE [Given]

> $\angle BAD = \angle EAC \qquad [Given]$ $\Rightarrow \qquad \angle BAD + \angle DAC = \angle DAC + \angle EAC$

$$\Rightarrow \qquad \angle BAC = \angle DAE$$

 $\therefore \qquad \Delta ABC \cong \Delta ADE \qquad [SAS Rule]$

 $\therefore \qquad BC = DE. \qquad [CPCT]$

[Adding $\angle DAC$ to both sides]

4. AB is a line segment and P is its mid-point. D and E are points on the same side of AB such that $\angle BAD = \angle ABE$ and $\angle EPA = \angle DPB$ (see Figure). Show that

> (i) $\Delta DAP \cong \Delta EBP$ (ii) AD = BE

Sol. Given : AB is a line segment and P is its mid-point. D and E are points on the same side of AB such that $\angle BAD = \angle ABE$ and $\angle EPA = \angle DPB$.

To Prove :

- (i) $\Delta DAP \cong \Delta EBP$
- (ii) AD = BE

Proof: (i) In $\triangle DAP$ and $\triangle EBP$,

AP = BP[Since P is the midpoint of the line segment AB] $\angle DAP = \angle EBP$ [Given] $\angle EPA = \angle DPB$ [Given] $\angle EPA + \angle EPD = \angle EPD + \angle DPB$ [Adding $\angle EPD$ to both sides] \Rightarrow $\angle APD = \angle BPE$ \Rightarrow [ASA Rule] $\Delta DAP \cong \Delta EBP$ *.*.. $\Delta DAP \cong \Delta EBP$ **(ii)** [From (1) above] AD = BE. [CPCT]

5. ABC is an isosceles triangle in which altitudes BE and CF are drawn to equal sides AC and AB respectively (see figure). Show that these altitudes are equal.

Sol. Given : ABC is an isosceles triangle in which altitudes BE and CF are drawn to sides AC and AB respectively.

To Prove : BE = CF.

Proof : ABC is an isosceles triangle

$$\therefore AB = AC$$

- $\therefore \qquad \angle ABC = \angle ACB \qquad \dots (1)$
- [Angles opposite to equal sides of a triangle are equal]

Unburden the parents of your Study Expenses

Govt. of India provides you scholarship till Post Graduation studies after your crack NTSE exam

In $\triangle BEC$ and $\triangle CFB$,

	$\angle BEC = \angle CFB$	$[Each = 90^{\circ}]$
	BC = CB	[Common]
	$\angle ECB = \angle FBC$	[From (1)]
··	$\Delta BEC \cong \Delta CFB$	[By ASA rule]
<i>.</i> .	BE = CF	[CPCT]

6. ABC is a triangle in which altitudes BE and CF to sides AC and AB are equal (see figure). Show that

(i) ∆ ABE ≅ ∆ ACF
(ii) AB = AC, i.e., ABC is an isosceles triangle.

(i) $\triangle ABE \cong \triangle ACF$

Sol. Given : ABC is a triangle in which altitudes BE and CF to sides AC and AB are equal.

Proof :

To Prove :

(ii) AB = AC, i.e., ABC is an isosceles triangle. (i) $\triangle ABE$ and $\triangle ACE$

(1)	ΔADE and ΔACF		
	BE = CF	[Given]	
	$\angle BAE = \angle CAF$	[Common]	
	$\angle AEB = \angle AFC$	[Each = 90°]	
	$\Delta ABE \cong \Delta ACF$	[By AAS Rule]	
(ii)	$\Delta ABE \cong \Delta ACF$	[Proved in (i) above]	
	AB = AC	[CPCT]	

- \therefore ΔABC is an isosceles triangle.
- 7. ABC and DBC are two isosceles triangles on the same base BC (see figure). Show that $\angle ABD = \angle ACD$.

Sol. Given : ABC and DBC are two isosceles triangles on the same base BC. To Prove : $\angle ABD = \angle ACD$ Proof : ABC is an isosceles triangle on the base BC $\therefore \quad \angle ABC = \angle ACB \qquad \dots \dots \dots (1)$

A Team that made — Cracking NTSE Easier Than Ever

8.

Sol.

...

AC > AB]

AC > BC

DBC is an isosceles triangle on the base BC $\angle DBC = \angle DCB$(2) *.*.. Adding the corresponding sides of (1) and (2), we get $\angle ABC + \angle DBC = \angle ACB + \angle DCB$ $\angle ABD = \angle ACD$ \Rightarrow Show that in a right angled triangle, the hypotenuse is the longest side. Let ABC be a right angled triangle in which $\angle B = 90^{\circ}$. Then, $\angle A + \angle C = 90^{\circ}$ [Sum of all the angles of a triangle is 180°1 $\angle B = \angle A + \angle C$ *.*.. $\angle B > \angle A$ and $\angle B > \angle C$ *.*..

[∴ Side opposite to greater angle is longer and

 \therefore AC is the longest side, i.e., hypotenuse is the longest side.

9. In figure, sides AB and AC of △ ABC are extended to points P and Q respectively. Also, ∠ PBC < ∠ QCB. Show that AC > AB

в

Sol. Given : Sides AB and AC of $\triangle ABC$ are extended to points P and Q respectively. Also, $\angle PBC < \angle QCB$.

To Prove : AC > AB.

- **Proof** : $\angle PBC < \angle QCB$ [Given]
- $\Rightarrow -\angle PBC > -\angle QCB$
- $\Rightarrow \qquad 180^{\circ} \angle PBC > 180^{\circ} \angle QCB$
- $\Rightarrow \qquad \angle ABC > \angle ACB$
- $\therefore \qquad AC > AB$

[Since the side opposite to the greater angle is longer]

10. In figure, $\angle B < \angle A$ and $\angle C < \angle D$. Show that AD < BC.

Given : In figure, $\angle B < \angle A$ and $\angle C < \angle D$. Sol. **To Prove :** AD < BC[Given] **Proof** : $\angle B < \angle A$ $\angle A > \angle B$ ·. OB > OA.....(1)[Side opposite to greater angle is longer] $\angle C < \angle D$ [Given] $\angle D > \angle C$ OC > OD.....(2)[Side opposite to greater angle is longer] From (1) and (2), we get OB + OC > OA + ODBC > AD \Rightarrow

 $\Rightarrow AD < BC.$

For complete NCERT Solutions visit <u>www.ntseguru.in</u> & take a free demo.

Or

Download NTSE GURU Android App for free from Google Playstore.

