NTSE

NCERT Solutions for Class 9
MATHS－Triangles

India＇s Best 360° Online NTSE Preparation Platform

1． ABCD is a quadrilateral in which $\mathrm{AD}=\mathrm{BC}$ and $\angle D A B=\angle C B A$（see figure）．Prove that
（i）$\triangle A B D \cong \triangle B A C$
（ii）$B D=A C$
（iii）$\angle A B D=\angle B A C$ ．

Sol．Given ： ABCD is a quadrilateral in which $\mathrm{AD}=\mathrm{BC}$ and $\angle D A B=\angle C B A$ ．

To prove ：
（i）$\triangle A B D \cong \triangle B A C$
（ii）$B D=A C$
（iii）$\angle A B D=\angle B A C$ ．

Proof ：
（i）In $\triangle A B D$ and $\triangle B A C$ ，

	$A D=B C$
	［Given］
	$A B=B A$
	$[$［AB is given］
\therefore	$\triangle D A B=\angle C B A$
	［Given］
	$\triangle A B D \cong \triangle B A C$
	［SAS criterion］

（ii）In $\triangle A B D \cong \triangle B A C$
$\angle D A B=\angle C B A$
$\therefore \quad B D=A C$
［CPCT］
（iii）$\triangle A B D=\triangle B A C$
$A D=B C$
$\therefore \quad \angle A B D=\angle B A C$
［Given］
［CPCT］

Download
NTSECURU Mobile App
FREE from

2. $\quad A D$ and $B C$ are equal perpendiculars to a line segment $A B$ (see Figure). Show that $C D$ bisects $A B$.

Sol. Given : AD and BC are equal perpendiculars to a line segment AB .
To Prove: CD bisects AB.
Proof : In $\triangle O A D$ and $\triangle O B C$

$$
\begin{array}{lll}
& A D=B C & {[\text { Given }]} \\
& \angle O A D=\angle O B C & {\left[\text { Each }=90^{\circ}\right]} \\
& \angle A O D=\angle B O C & {[\text { Vertically Opposite Angles] }} \\
\therefore & \Delta O A D \cong \triangle O B C & {[\text { AAS rule] }} \\
& O A=O B & {[\text { PCT] }} \\
\therefore \quad & C D \text { bisects AB. } &
\end{array}
$$

3. In Figure, $\mathrm{AC}=\mathrm{AE}, \mathrm{AB}=\mathrm{AD}$ and $\angle B A D=\angle E A C$. Show that $\mathrm{BC}=$ DE.

Sol. Given : In figure, $A C=A E, A B=A D$ and $\angle B A D=\angle E A C$.
To Prove : $B C=D E$.
Proof: In $\triangle A B C$ and $\triangle A D E$,

$$
\begin{array}{llc}
& A B=A D & \text { [Given] } \\
& A C=A E & \text { [Given] } \\
& \angle B A D=\angle E A C & \text { [Given] } \\
\Rightarrow & \angle B A D+\angle D A C=\angle D A C+\angle E A C \\
\Rightarrow & \angle B A C=\angle D A E & \\
\therefore & \Delta A B C \cong \triangle A D E & \text { [SAS Rule] } \\
\therefore \quad & B C=D E . & {[\text { CPCT] }}
\end{array}
$$

4. $\quad \mathrm{AB}$ is a line segment and P is its mid-point. D and E are points on the same side of AB such that $\angle B A D=\angle A B E$ and $\angle E P A=\angle D P B$ (see Figure). Show that
(i) $\triangle D A P \cong \triangle E B P$
(ii) $A D=B E$

Sol. Given : $A B$ is a line segment and P is its mid-point. D and E are points on the same side of $A B$ such that $\angle B A D=\angle A B E$ and $\angle E P A=\angle D P B$.

To Prove :

(i) $\triangle D A P \cong \triangle E B P$
(ii) $A D=B E$

Proof: (i) In $\triangle D A P$ and $\triangle E B P$,

$$
\begin{array}{lll}
& A P=B P & \text { [Since P is the midpoint of the line segment AB] } \\
& \angle D A P=\angle E B P & \text { [Given] } \\
& \angle E P A=\angle D P B & \text { [Given] } \\
\Rightarrow & \angle E P A+\angle E P D=\angle E P D+\angle D P B \quad \text { [Adding } \angle E P D \text { to both sides] } \\
\Rightarrow & \angle A P D=\angle B P E & \text { [ASA Rule] } \\
\therefore & \triangle D A P \cong \triangle E B P & \\
\text { (iii) } & \triangle D A P \cong \triangle E B P & {[\text { [From (1) above] }} \\
\therefore & A D=B E . & {[C P C T]}
\end{array}
$$

5. ABC is an isosceles triangle in which altitudes BE and CF are drawn to equal sides $A C$ and $A B$ respectively (see figure). Show that these altitudes are equal.

Sol. Given : ABC is an isosceles triangle in which altitudes BE and CF are
 drawn to sides $A C$ and $A B$ respectively.
To Prove : $\quad \mathrm{BE}=\mathrm{CF}$.
Proof : $\quad \mathrm{ABC}$ is an isosceles triangle
$\therefore \quad A B=A C$
$\therefore \quad \angle A B C=\angle A C B$
[Angles opposite to equal sides of a triangle are equal]

Unburden the parents of your Study Expenses

Govt. of India
provides you scholarship till Post Graduation studies after your crack NTSE exam

In $\triangle B E C$ and $\triangle C F B$,

	$\angle B E C=\angle C F B$	$\left[\right.$ Each $\left.=90^{\circ}\right]$
	$B C=C B$	$[$ Common $]$
	$\angle E C B=\angle F B C$	$[$ [From (1)]
\therefore	$\Delta B E C \cong \triangle C F B$	$[$ [By ASA rule]
\therefore	$B E=C F$	$[$ [PCT]

6. $\quad \mathrm{ABC}$ is a triangle in which altitudes BE and CF to sides AC and AB are equal (see figure). Show that
(i) $\triangle \mathrm{ABE} \cong \triangle \mathrm{ACF}$
(ii) $\mathrm{AB}=\mathrm{AC}$, i.e., ABC is an isosceles triangle.

Sol. Given : ABC is a triangle in which altitudes BE and CF to sides AC and AB are equal.
To Prove : (i) $\triangle \mathrm{ABE} \cong \triangle \mathrm{ACF}$
(ii) $\mathrm{AB}=\mathrm{AC}$, i.e., ABC is an isosceles triangle.

Proof :
(i) $\triangle A B E$ and $\triangle A C F$

$\therefore \quad \triangle A B C$ is an isosceles triangle.
7. ABC and DBC are two isosceles triangles on the same base BC (see figure). Show that $\angle A B D=\angle A C D$.

Sol. Given : ABC and DBC are two isosceles triangles on the same base BC.
To Prove: $\angle A B D=\angle A C D$
Proof : $\quad \mathrm{ABC}$ is an isosceles triangle on the base BC

$$
\begin{equation*}
\therefore \quad \angle A B C=\angle A C B \tag{1}
\end{equation*}
$$

DBC is an isosceles triangle on the base BC

$$
\begin{equation*}
\therefore \quad \angle D B C=\angle D C B \tag{2}
\end{equation*}
$$

Adding the corresponding sides of (1) and (2), we get

$$
\begin{aligned}
& \angle A B C+\angle D B C=\angle A C B+\angle D C B \\
\Rightarrow \quad & \angle A B D=\angle A C D
\end{aligned}
$$

8. Show that in a right angled triangle, the hypotenuse is the longest side.

Sol. Let ABC be a right angled triangle in which $\angle B=90^{\circ}$.
Then, $\angle A+\angle C=90^{\circ} \quad$ [Sum of all the angles of a triangle is 180°]
$\therefore \quad \angle B=\angle A+\angle C$
$\therefore \quad \angle B>\angle A$ and $\angle B>\angle C$
$\therefore \quad A C>B C \quad[\therefore$ Side opposite to greater angle is longer and

$\mathrm{AC}>\mathrm{AB}]$
$\therefore \quad A C$ is the longest side, i.e., hypotenuse is the longest side.
9. In figure, sides $A B$ and $A C$ of $\triangle A B C$ are extended to points P and Q respectively. Also, $\angle \mathrm{PBC}<\angle \mathrm{QCB}$. Show that $\mathrm{AC}>\mathrm{AB}$

Sol. Given : Sides AB and AC of $\triangle A B C$ are extended to points P and Q respectively. Also, $\angle P B C<\angle Q C B$.

To Prove : $A C>A B$.
Proof : $\angle P B C<\angle Q C B \quad$ [Given]
$\Rightarrow \quad-\angle P B C>-\angle Q C B$
$\Rightarrow \quad 180^{\circ}-\angle P B C>180^{\circ}-\angle Q C B$
$\Rightarrow \quad \angle A B C>\angle A C B$
$\therefore \quad A C>A B \quad$ [Since the side opposite to the greater angle is longer]
10. In figure, $\angle \mathrm{B}<\angle \mathrm{A}$ and $\angle \mathrm{C}<\angle \mathrm{D}$. Show that $\mathrm{AD}<\mathrm{BC}$.

Sol. Given : In figure, $\angle B<\angle A$ and $\angle C<\angle D$.
To Prove : $A D<B C$
[Given]
Proof : $\angle B<\angle A$
$\therefore \quad \angle A>\angle B$
$O B>O A \quad \ldots \ldots$ (1)[Side opposite to greater angle is longer]
$\angle C<\angle D$
[Given]
$\angle D>\angle C$
$O C>O D$
(2) [Side opposite to greater angle is longer]

From (1) and (2), we get

$$
\begin{array}{ll}
& O B+O C>O A+O D \\
\Rightarrow \quad & B C>A D \\
\Rightarrow \quad & A D<B C .
\end{array}
$$

For complete NCERT Solutions visit www.ntseguru.in \& take a free demo.
Or
Download NTSE GURU Android App for free from Google Playstore.

© Subscribe to

