NCERT Solutions for Class 9 MATHS – Quadrilateral

NTSE | CBSE | State Boards | Class 8th - 10th

1. The angles of quadrilateral are in the ratio 3 : 5 : 9 : 13. Find all the angles of the quadrilateral.

Sol. Let ABCD be a quadrilateral in which $\angle A : \angle B : \angle C : \angle D = 3 : 5 : 9 : 13$

Sum of the ratios = 3 + 5 + 9 + 13 = 30

Also, $\angle A + \angle B + \angle C + \angle D = 360^{\circ}$

Sum of all the angles of a quadrilateral is 360°

$$\therefore \qquad \angle A = \frac{3}{30} \times 360^\circ = 36^\circ$$
$$\angle B = \frac{5}{30} \times 360^\circ = 60^\circ$$
$$\angle C = \frac{9}{30} \times 360^\circ = 108^\circ$$
and
$$\angle D = \frac{13}{30} \times 360^\circ = 156^\circ$$

2. If the diagonals of a parallelogram are equal, then show that it is a rectangle. Sol.

Given : In parallelogram ABCD, AC = BD**To Prove :** Parallelogram ABCD is a rectangle. **Proof :** In $\triangle ACB$ and $\triangle BDA$,

AC = BD[Given]AB = BA[Common]BC = AD[Opposite sides of the parallelogram ABCD] $\Delta ACB \cong \Delta BDA$ [SSS Rule] \therefore $\angle ABC = \angle BAD$ Accolored ABC = ABCAccolored ABC = ABCAccolored ABC = ABCABC = ABCAccolored ABC = ABCABC = ABCAbcolored ABC = ABCABC = ABCAccolored ABC = ABCABC = ABCAbcolored ABC = ABCABC = ABC

 $AD \parallel BC$ and the transversal AB intersects them.

Download **NTSEGURU Mobile App**

Rating: 4.5 on Playstore

3.

Sol.

 $\angle BAD + \angle ABC = 180^{\circ}$ *.*..(2) [Sum of consecutive interior angles on the same side of the transversal is 180°] From (1) and (2), $\angle BAD = \angle ABC = 90^{\circ}$ $\angle A = 90^{\circ}$ and $\angle C = 90^{\circ}$ ·. Similarly we can prove $\angle B = 90^{\circ}$ and $\angle D = 90^{\circ}$ Parallelogram ABCD is a rectangle. Show that if the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus. Given : ABCD is a quadrilateral where diagonals AC and BD intersect each other at right angles at O. To Prove : Quadrilateral ABCD is a rhombus. **Proof** : In $\triangle AOB$ and $\triangle AOD$, AO = AO[Common] [Given $\angle AOB = \angle AOD$ Each = 90°] OB = OD $\Delta AOB = \Delta AOD$ [SAS Rule] AB = AD.....(1) [CPCT] Similarly, we can prove that AB = BC....(2)

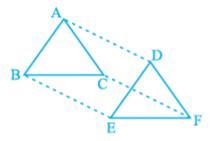
BC = CD.....(3)

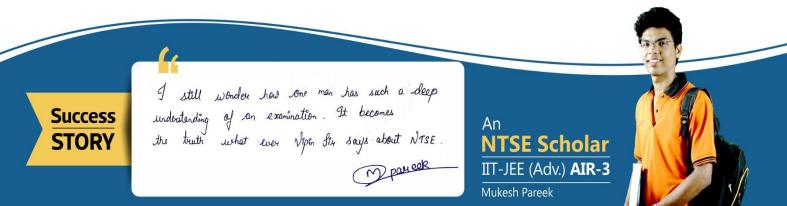
$$CD = AD$$
(4)

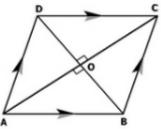
From (1), (2), (3) and (4), we obtain

AB = BC = CD = DA

- Quadrilateral ABCD is a rhombus. · · .
- $\triangle ABC$ $\Delta DEF, AB = DE, AB \parallel DE, BC = EF$ 4. In and and $BC \parallel EF$. Vertices A, B and C are joined to vertices D, E and F respectively (see Figure). Show that
 - (i) Quadrilateral ABED is a parallelogram
 - Quadrilateral BEFC is a parallelogram (ii)
 - $AD \parallel CF$ and AD = CF(iii)








```
(iv) Quadrilateral ACFD is a parallelogram
```

```
(v) AC = DF
```

```
(vi) \Delta ABC \cong \Delta DEF.
```

```
Sol. Given : In \triangle ABC and \triangle DEF, AB = DE, AB \parallel DE, BC = EF and BC \parallel EF.
```

Vertices A, B and C are joined to vertices D, E and F respectively.

To Prove :

- (i) Quadrilateral ABED is a parallelogram
- (ii) Quadrilateral BEFC is a parallelogram
- (iii) $AD \parallel CF$ and AD = CF
- (iv) Quadrilateral ACFD is a parallelogram

```
(v) AC = DF
```

```
(vi) \Delta ABC \cong \Delta DEF.
```

```
Proof : (i) In quadrilateral ABED,
```

AB = DE and $AB \parallel DE$ [Given]

```
.:. Quadrilateral ABED is a parallelogram
```

(ii) In quadrilateral BEFC,

BC = EF and $BC \parallel EF$ [Given]

∴ Quadrilateral BEFC is a parallelogram.

- (iii) ABED is a parallelogram [From (i)]
- $\therefore \qquad AD \parallel BE \qquad \dots \dots (1)$

[:: Opposite sides of a parallelogram are parallel and equal.]

.....(2)

BEFC is a parallelogram [From (ii)]

 \therefore BE || CF and BE = CF

[:: Opposite sides of a parallelogram are parallel and equal.] From (1) and (2), we obtains $AD \parallel CF$ and AD = CF

(iv) In quadrilateral ACFD,

```
AD \parallel CF and AD = CF [Proved in (iii)]
```

```
... Quadrilateral ACFD is a parallelogram
```

- (v) ACFD is a parallelogram [Proved in (iv)] $AC \parallel DF$ and AC = DF
 - [:: In a parallelogram opposite sides are parallel and of equal length]

Unburden the parents of your Study Expenses

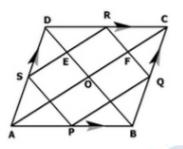
Govt. of India

provides you scholarship till Post Graduation studies after your crack NTSE exam

(vi) In $\triangle ABC$ and $\triangle DEF$

AB = DE	[:: ABED is a	parallelogram]
BC = EF	[:: BEFC is a]	parallelogram]
AC = DF	[Proved in (v)]	
$\therefore \Delta ABC$	$C \cong \Delta DEF$	[SSS Rule]

5. ABCD is a rhombus and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rectangle.



Given : ABCD is a rhombus. P, Q, R, S are the mid-points of AB, BC, CD, DA respectively. PQ, QR, RS and SP are joined.

To Prove : PQRS is a rectangle.

Construction : Join AC and BD.

Proof : In triangles RDS and PBQ.

DS = QB [:: Halves of opposite sides of parallelogram ABCD which are equal] DR = PB [:: Halves of opposite sides of parallelogram ABCD which are equal] $\angle SDR = \angle QBP$ [:: Opposite angles of parallelogram ABCD which are equal] $\therefore \quad \Delta RDS \cong \Delta PBQ$ [:: SAS Axiom]

$$\therefore SR = PQ \qquad [\because c.p.c.t]$$

In triangles RCQ and PAS,

RC = AP[\because Halves of opposite sides of parallelogram ABCD which are equal]CQ = AS[\because Halves of opposite sides of parallelogram ABCD which are equal] $\angle RCQ = \angle PAS$ [\because Opposite angles of parallelogram ABCD which are equal]

A Team that made — Cracking NTSE Easier Than Ever

 $\Delta RCQ \cong \Delta PAS$ *.*..

RQ = SP[CPCT]

In PQRS, · · .

SR = PQ and RQ = SP

PQRS is a parallelogram, *.*..

In $\triangle CDB$,

R and Q are the mid-points of DC and CB respectively. ...

> $RQ \parallel DB$ \Rightarrow RF || EO.

 $RE \parallel FO$ Similarly,

OFRE is a parallelogram *.*..

$$\therefore \qquad \angle R = \angle EOF = 90^{\circ}$$

[:: Opposite angles of a parallelogram are equal and diagonals of a rhombus intersect at 90°] Thus PQRS is a rectangle.

6. ABCD is a rectangle and P, Q, R and S are mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rhombus.

Given : ABCD is a rectangle. P, Q, R and S are mid-points of AB, BC, CD and DA respectively. PQ, QR, Sol. RS and SP are joined.

To Prove : Quadrilateral PQRS is a rhombus.

Construction : Join AC.

Proof : In $\triangle ABC$,

$$\therefore \qquad PQ \parallel AC \text{ and } PQ = \frac{1}{2}AC \qquad \dots (1)$$

In $\triangle ADC$,

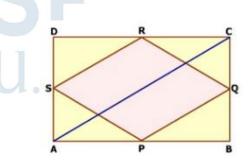
- \therefore S and R are the mid-points of AD and DC respectively.
- \therefore SR || AC and SR = $\frac{1}{2}$ AC(2)

From (1) and (2),

Did you know?

 $PQ \parallel SR$ and PQ = SR

Quadrilateral PQRS is a parallelogram(3)



Best platform for NTSE as well as class 8th, 9th, 10th,

In rectangle ABCD,

AD = BC [Opposite sides
$$\Rightarrow \frac{1}{2}AD = \frac{1}{2}BC$$
]

 \therefore Halves of equals are equal

$$\Rightarrow \qquad AS = BQ$$

In $\triangle APS$ and $\triangle BPQ$,

AP =	= <i>BP</i>	[: P is the mid-point of AB]
AS =	= BQ	[Proved above]
$\angle P_{A}$	$AS = \angle PBQ$	$[Each = 90^{\circ}]$
Δ	$APS \cong \Delta BPQ$	[SAS Axiom]
$\therefore PS =$	= PQ(4)	[c.p.c.t.]

In view of (3) and (4), PQRS is a rhombus.

- ABCD is a trapezium in which AB || DC, BD is a diagonal and E is the mid-point of AD. A line is drawn through E parallel to AB intersecting BC at F (see Figure). Show that F is the mid-point of BC.
- Sol. Given: ABCD is a trapezium in which $AB \parallel DC$, BD is a diagonal and E is the mid-point of AD. A line is drawn through E parallel to AB intersecting BC at R.

To Prove : F is the mid-point of BC.

Proof : Let DB intersect EF at G.

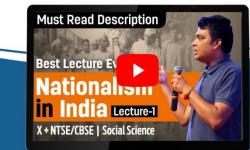
Subscribe to

In $\Delta DAB, E$ is the mid-point of DA and $EG \parallel AB$

 \therefore G is the mid-point of DB. [By converse of mid-point theorem]

Again, in $\triangle BDC, G$ is the mid-point of BD and $GF \parallel AB \parallel DC$

... F is the mid-point of BC. [By converse of mid-point theorem]



G

B

D

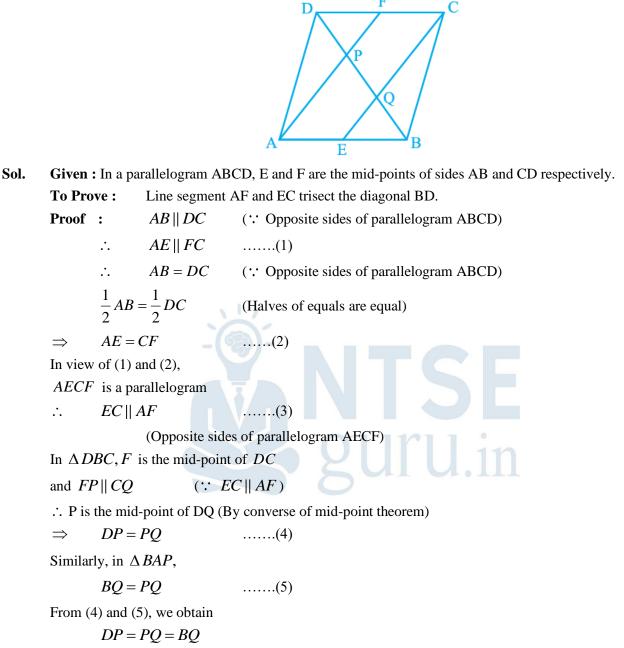
E

Г

for more exciting videos on NTSE & School Exam Preparation

NTSEguru **Willie** Channel

8. In a parallelogram ABCD, E and F are the mid-points of sides AB and CD respectively (see Figure). Show that the line segments AF and EC trisect the diagonal BD.



 \Rightarrow Line segments AF and EC trisect the diagonal BD.

- 9. Show that the line segments joining the mid-points of the opposite sides of a quadrilateral bisect each other.
- Sol. Given : ABCD is a quadrilateral. P, Q, R and S are the mid-points of the sides DC, CB, BA and AD respectively.

To Prove : PR and QS bisect each other. Construction : Join PQ, QR, RS, SP, AC and BD. **Proof** : In $\triangle ABC$,

R and Q are the mid-points of AB and BC respectively. · .

$$\therefore \qquad RQ \parallel AC \text{ and } RQ = \frac{1}{2}AC.$$

Similarly, we can show that

$$PS \parallel AC$$
 and $PS = \frac{1}{2}AC$.

 $RQ \parallel PS$ and RQ = PS. .**.**.

Thus, pair of opposite sides of a quadrilateral PQRS are parallel and equal.

PORS is a parallelogram. *.*..

Since the diagonals of a parallelogram bisect each other.

... PR and QS bisect each other.

- ABC is a triangle right angled at C. A line through the mid-point M of hypotenuse AB and parallel to BC 10. intersects AC at D. Show that
 - D is the mid-point of AC (i)

(ii)
$$MD \perp AC$$

(iii)
$$CM = MA = \frac{1}{2}AB$$

Sol.

Given : ABC is a triangle right angled at C. A line through the mid-point M of hypotenuse AB and parallel to BC intersects AC at D.

still wonder how one man has such a deep utanding of an examination. It becomes truth what ever Nipin fix says about NTSE.

An

parreak

NTSE Scholar

IIT-JEE (Adv.) AIR-3

Mukesh Pareek

To Prove :

Success

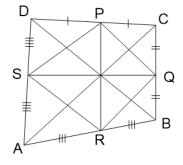
STORY

D is the mid-point of AC (i)

understanding

the

 $MD \perp AC$ (ii)



 $CM = MA = \frac{1}{2}AB$ (iii) **Proof**: In $\triangle ACB, M$ is the mid-point of AB and $MD \parallel BC$ **(i)** \therefore D is the mid-point of AC [By converse of mid-point theorem] $MD \parallel BC$ and AC intersects them (ii) $\therefore \angle ADM = \angle ACB$ [Corresponding angles] But $\angle ACB = 90^{\circ}$ [Given] $\therefore \angle ADM = 90^{\circ}$ $\Rightarrow MD \perp AC$ (iii) Now, $\angle ADM + \angle CDM = 180^{\circ}$ [Linear Pair Axiom] $\angle ADM = \angle CDM = 90^{\circ}$ ÷. In $\triangle ADM$ and $\triangle CDM$, AD = CD[\therefore D is the mid-point of AC] $\angle ADM = \angle CDM$ $[Each = 90^{\circ}]$ DM = DM [Common] $\Delta ADM \cong \Delta CDM$ [SAS Rule] · . MA = MC· . [CPCT] But M is the mid-point of AB $\therefore \qquad MA = MB = \frac{1}{2}AB$ y y u $\therefore \quad MA = MC = \frac{1}{2}AB$ $\Rightarrow CM = MA = \frac{1}{2}AB$

For complete NCERT Solutions visit <u>www.ntseguru.in</u> & take a free demo.

Or

Download NTSE GURU Android App for free from Google Playstore.

