NTSE

NCERT Solutions for Class 9
MATHS - Quadrilateral

India's Best 360° Online NTSE Preparation Platform

1. The angles of quadrilateral are in the ratio $3: 5: 9: 13$. Find all the angles of the quadrilateral.

Sol. Let ABCD be a quadrilateral in which $\angle A: \angle B: \angle C: \angle D=3: 5: 9: 13$
Sum of the ratios $=3+5+9+13=30$
Also, $\angle A+\angle B+\angle C+\angle D=360^{\circ}$
Sum of all the angles of a quadrilateral is 360°

$$
\begin{aligned}
\therefore \quad \angle A & =\frac{3}{30} \times 360^{\circ}=36^{\circ} \\
\angle B & =\frac{5}{30} \times 360^{\circ}=60^{\circ} \\
\angle C & =\frac{9}{30} \times 360^{\circ}=108^{\circ}
\end{aligned}
$$

and

$$
\angle D=\frac{13}{30} \times 360^{\circ}=156^{\circ}
$$

2. If the diagonals of a parallelogram are equal, then show that it is a rectangle.

Sol.

Given: In parallelogram $\mathrm{ABCD}, \mathrm{AC}=\mathrm{BD}$
To Prove : Parallelogram $A B C D$ is a rectangle.
Proof : In $\triangle A C B$ and $\triangle B D A$,

$$
\begin{array}{ll}
A C=B D & {[\text { Given }]} \\
A B=B A & \text { [Common] } \\
B C=A D & \text { [Opposite sides of the parallelogram ABCD] }
\end{array}
$$

$\triangle A C B \cong \triangle B D A \quad$ [SSS Rule]
$\therefore \quad \angle A B C=\angle B A D \quad$.....(1) [CPCT]
Again $A D \| B C \quad$ Opposite sides of parallelogram ABCD
$A D \| B C$ and the transversal AB intersects them.

Download

NTSECURU Mobile App
FREE from
$\therefore \quad \angle B A D+\angle A B C=180^{\circ}$
[Sum of consecutive interior angles on the same side of the transversal is 180°]
From (1) and (2),
$\angle B A D=\angle A B C=90^{\circ}$
$\therefore \quad \angle A=90^{\circ}$ and $\angle C=90^{\circ}$
Similarly we can prove $\angle B=90^{\circ}$ and $\angle D=90^{\circ}$
Parallelogram ABCD is a rectangle.
3. Show that if the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus.

Sol. Given : ABCD is a quadrilateral where diagonals AC and BD intersect each other at right angles at O .
To Prove : Quadrilateral $A B C D$ is a rhombus.
Proof: In $\triangle A O B$ and $\triangle A O D$,

$$
\begin{array}{ll}
A O=A O & {[\text { Common }]} \\
O B=O D & {\left[\text { Given } \angle A O B=\angle A O D \text { Each }=90^{\circ}\right]}
\end{array}
$$

$\therefore \quad \triangle A O B=\triangle A O D \quad$ [SAS Rule]

$$
A B=A D \quad \ldots \ldots . .(1))-[\text { CPCT }]
$$

Similarly, we can prove that

$$
\begin{align*}
& A B=B C \tag{2}\\
& B C=C D \tag{3}\\
& C D=A D \tag{4}
\end{align*}
$$

From (1), (2), (3) and (4), we obtain
$A B=B C=C D=D A$
$\therefore \quad$ Quadrilateral ABCD is a rhombus.
4. In $\quad \triangle A B C$ and $\quad \triangle D E F, A B=D E, A B \| D E, B C=E F \quad$ and $B C \| E F$. Vertices A, B and C are joined to vertices D, E and F respectively (see Figure). Show that
(i) Quadrilateral ABED is a parallelogram
(ii) Quadrilateral BEFC is a parallelogram

(iii) $A D \| C F$ and $A D=C F$
(iv) Quadrilateral ACFD is a parallelogram
(v) $\quad \mathrm{AC}=\mathrm{DF}$
(vi) $\triangle A B C \cong \triangle D E F$.

Sol. Given : In $\triangle A B C$ and $\triangle D E F, A B=D E, A B \| D E, B C=E F$ and $B C \| E F$.
Vertices A, B and C are joined to vertices D, E and F respectively.
To Prove :
(i) Quadrilateral ABED is a parallelogram
(ii) Quadrilateral BEFC is a parallelogram
(iii) $A D \| C F$ and $A D=C F$
(iv) Quadrilateral ACFD is a parallelogram
(v) $\mathrm{AC}=\mathrm{DF}$
(vi) $\triangle A B C \cong \triangle D E F$.

Proof : (i) In quadrilateral $A B E D$,
$A B=D E$ and $A B \| D E$ [Given]
\therefore Quadrilateral ABED is a parallelogram
(ii) In quadrilateral BEFC,
$B C=E F$ and $B C \| E F$ [Given]
\therefore Quadrilateral BEFC is a parallelogram.
(iii) ABED is a parallelogram
[From (i)]
$\therefore \quad A D \| B E$
[$\because \quad$ Opposite sides of a parallelogram are parallel and equal.]
BEFC is a parallelogram [From (ii)]
$\therefore \quad B E \| C F$ and $B E=C F$
$[\because \quad$ Opposite sides of a parallelogram are parallel and equal.]
From (1) and (2), we obtains $A D \| C F$ and $A D=C F$
(iv) In quadrilateral ACFD ,
$A D \| C F$ and $A D=C F \quad$ [Proved in (iii)]
$\therefore \quad$ Quadrilateral ACFD is a parallelogram
(v) ACFD is a parallelogram [Proved in (iv)]
$A C \| D F$ and $A C=D F$
$[\because$ In a parallelogram opposite sides are parallel and of equal length]
(vi) In $\triangle A B C$ and $\triangle D E F$

$$
\begin{array}{ll}
A B=D E & {[\because \text { ABED is a parallelogram }]} \\
B C=E F & {[\because \text { BEFC is a parallelogram }]} \\
A C=D F & {[\text { Proved in }(\mathrm{v})]}
\end{array}
$$

$$
\therefore \quad \triangle A B C \cong \triangle D E F \quad[\text { SSS Rule }]
$$

5. $\quad A B C D$ is a rhombus and P, Q, R and S are the mid-points of the sides $A B, B C, C D$ and $D A$ respectively. Show that the quadrilateral PQRS is a rectangle.

Sol.

Given : ABCD is a rhombus. $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}$ are the mid-points of $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathrm{DA}$ respectively. $\mathrm{PQ}, \mathrm{QR}, \mathrm{RS}$ and SP are joined.
To Prove : PQRS is a rectangle.
Construction : Join AC and BD.
Proof : In triangles RDS and PBQ.
$D S=Q B \quad[\because$ Halves of opposite sides of parallelogram ABCD which are equal $]$
$D R=P B \quad[\because$ Halves of opposite sides of parallelogram ABCD which are equal $]$
$\angle S D R=\angle Q B P \quad[\because$ Opposite angles of parallelogram ABCD which are equal $]$

$$
\begin{array}{lll}
\therefore & \triangle R D S \cong \triangle P B Q & {[\because \text { SAS Axiom }]} \\
\therefore & S R=P Q & {[\because \text { c.p.c.t }]}
\end{array}
$$

In triangles RCQ and PAS,
$R C=A P \quad[\because$ Halves of opposite sides of parallelogram ABCD which are equal $]$
$C Q=A S \quad[\because$ Halves of opposite sides of parallelogram ABCD which are equal $]$
$\angle R C Q=\angle P A S \quad[\because$ Opposite angles of parallelogram ABCD which are equal $]$

A Team that made Cracking NTSE Easier Than Ever

$\therefore \quad \triangle R C Q \cong \triangle P A S$
$R Q=S P \quad[C P C T]$
$\therefore \quad$ In $P Q R S$,
$S R=P Q$ and $R Q=S P$
$\therefore \quad P Q R S$ is a parallelogram,
In $\triangle C D B$,
$\therefore \quad \mathrm{R}$ and Q are the mid-points of DC and CB respectively.
$R Q\|D B \quad \Rightarrow R F\| E O$.
Similarly, $\quad R E \| F O$
$\therefore \quad$ OFRE is a parallelogram
$\therefore \quad \angle R=\angle E O F=90^{\circ}$
[\because Opposite angles of a parallelogram are equal and diagonals of a rhombus intersect at 90°]
Thus PQRS is a rectangle.
6. $A B C D$ is a rectangle and P, Q, R and S are mid-points of the sides $A B, B C, C D$ and $D A$ respectively. Show that the quadrilateral $P Q R S$ is a rhombus.
Sol. Given : ABCD is a rectangle. $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S are mid-points of $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA respectively. PQ, QR, RS and SP are joined.
To Prove : Quadrilateral PQRS is a rhombus.
Construction : Join AC.

Proof: In $\triangle A B C$,
$\therefore \quad \mathrm{P}$ and Q are the mid-points of AB and BC respectively.
$\therefore \quad P Q \| A C$ and $P Q=\frac{1}{2} A C$

In $\triangle A D C$,
$\therefore \mathrm{S}$ and R are the mid-points of AD and DC respectively.
$\therefore S R \| A C$ and $S R=\frac{1}{2} A C$
From (1) and (2),
$P Q \| S R$ and $P Q=S R$
$\therefore \quad$ Quadrilateral $P Q R S$ is a parallelogram

In rectangle ABCD ,

$$
\mathrm{AD}=\mathrm{BC} \quad\left[\text { Opposite sides } \Rightarrow \frac{1}{2} A D=\frac{1}{2} B C\right]
$$

$\therefore \quad$ Halves of equals are equal
$\Rightarrow \quad A S=B Q$
In $\triangle A P S$ and $\triangle B P Q$,

$$
\begin{aligned}
& A P=B P \quad[\because \mathrm{P} \text { is the mid-point of } \mathrm{AB}] \\
& A S=B Q \quad \text { [Proved above] } \\
& \angle P A S=\angle P B Q \quad\left[\text { Each }=90^{\circ}\right] \\
& \therefore \triangle A P S \cong \triangle B P Q \quad[\text { SAS Axiom] } \\
& \therefore \quad P S=P Q \quad \text {.....(4) [c.p.c.t.] }
\end{aligned}
$$

In view of (3) and (4), PQRS is a rhombus.
7. $A B C D$ is a trapezium in which $A B \| D C, B D$ is a diagonal and E is the mid-point of $A D$. A line is drawn through E parallel to $A B$ intersecting $B C$ at F (see Figure). Show that F is the mid-point of $B C$.

Sol. Given: ABCD is a trapezium in which $A B \| D C, B D$ is a diagonal and E is the mid-point of AD . A line is drawn through E parallel to AB intersecting BC at R .

To Prove : F is the mid-point of BC .
Proof : Let DB intersect EF at G.
In $\triangle D A B, E$ is the mid-point of $D A$ and $E G \| A B$
$\therefore \quad \mathrm{G}$ is the mid-point of DB . [By converse of mid-point theorem]

Again, in $\triangle B D C, G$ is the mid-point of $B D$ and $G F\|A B\| D C$
$\therefore \quad$ F is the mid-point of BC. [By converse of mid-point theorem]

© Subscribe to

8. In a parallelogram $\mathrm{ABCD}, \mathrm{E}$ and F are the mid-points of sides AB and CD respectively (see Figure).

Show that the line segments AF and EC trisect the diagonal BD .

Sol. Given : In a parallelogram $\mathrm{ABCD}, \mathrm{E}$ and F are the mid-points of sides AB and CD respectively.
To Prove : Line segment AF and EC trisect the diagonal BD.

$$
\begin{array}{lll}
\text { Proof } & : & A B \| D C \\
& (\because \text { Opposite sides of parallelogram ABCD) } \\
& \therefore & A E \| F C \\
& \ldots \ldots . .(1) \\
& & \\
& & \tag{2}\\
& A B=D C & (\because \text { Opposite sides of parallelogram } A B C D) \\
\Rightarrow & A E=C F & (\text { Halves of equals are equal }) \\
& \ldots \ldots .(2)
\end{array}
$$

In view of (1) and (2),
$A E C F$ is a parallelogram

$$
\begin{equation*}
\therefore \quad E C \| A F \tag{3}
\end{equation*}
$$

(Opposite sides of parallelogram AECF)
In $\triangle D B C, F$ is the mid-point of $D C$
and $F P \| C Q \quad(\because E C \| A F)$
$\therefore \mathrm{P}$ is the mid-point of DQ (By converse of mid-point theorem)

$$
\begin{equation*}
\Rightarrow \quad D P=P Q \tag{4}
\end{equation*}
$$

Similarly, in $\triangle B A P$,

$$
\begin{equation*}
B Q=P Q \tag{5}
\end{equation*}
$$

From (4) and (5), we obtain

$$
D P=P Q=B Q
$$

$\Rightarrow \quad$ Line segments AF and EC trisect the diagonal BD.

© Subscribe to

9. Show that the line segments joining the mid-points of the opposite sides of a quadrilateral bisect each other.

Sol. Given : $A B C D$ is a quadrilateral. P, Q, R and S are the mid-points of the sides $\mathrm{DC}, \mathrm{CB}, \mathrm{BA}$ and AD respectively.

To Prove : PR and QS bisect each other.
Construction : Join PQ, QR, RS, SP, AC and BD.
Proof: In $\triangle A B C$,
$\therefore \quad \mathrm{R}$ and Q are the mid-points of AB and BC respectively.

$\therefore \quad R Q \| A C$ and $R Q=\frac{1}{2} A C$.
Similarly, we can show that

$$
P S \| A C \text { and } P S=\frac{1}{2} A C
$$

$\therefore \quad R Q \| P S$ and $R Q=P S$.
Thus, pair of opposite sides of a quadrilateral PQRS are parallel and equal.
$\therefore \quad P Q R S$ is a parallelogram.
Since the diagonals of a parallelogram bisect each other.
$\therefore \quad P R$ and $Q S$ bisect each other.
10. $A B C$ is a triangle right angled at C. A line through the mid-point M of hypotenuse $A B$ and parallel to $B C$ intersects AC at D. Show that
(i) D is the mid-point of AC
(ii) $M D \perp A C$
(iii) $\quad C M=M A=\frac{1}{2} A B$

Sol.

Given : ABC is a triangle right angled at C . A line through the mid-point M of hypotenuse AB and parallel to BC intersects AC at D .

To Prove :

(i) D is the mid-point of AC
(ii) $M D \perp A C$
 undertanditig of on examandion. It becomes the with what weer Upas firn says chat NTSE
(iii) $\quad C M=M A=\frac{1}{2} A B$

Proof: (i) In $\triangle A C B, M$ is the mid-point of AB and $M D \| B C$
$\therefore \mathrm{D}$ is the mid-point of AC
[By converse of mid-point theorem]
(ii) $M D \| B C$ and $A C$ intersects them
$\therefore \angle A D M=\angle A C B \quad$ [Corresponding angles]
But $\angle A C B=90^{\circ}$
$\therefore \angle A D M=90^{\circ}$
$\Rightarrow \quad M D \perp A C$
(iii) Now, $\angle A D M+\angle C D M=180^{\circ} \quad$ [Linear Pair Axiom]
$\therefore \quad \angle A D M=\angle C D M=90^{\circ}$
In $\triangle A D M$ and $\triangle C D M$,

$$
\begin{array}{ll}
A D=C D & {[\therefore \mathrm{D} \text { is the mid-point of } \mathrm{AC}]} \\
\angle A D M=\angle C D M & {\left[\text { Each }=90^{\circ}\right]}
\end{array}
$$

$D M=D M \quad$ [Common]
$\therefore \quad \triangle A D M \cong \triangle C D M$
$\therefore \quad M A=M C$
But M is the mid-point of AB

$$
\begin{array}{ll}
\therefore & M A=M B=\frac{1}{2} A B \\
\therefore & M A=M C=\frac{1}{2} A B
\end{array}
$$

$$
\Rightarrow \quad C M=M A=\frac{1}{2} A B
$$

For complete NCERT Solutions visit www.ntseguru.in \& take a free demo.
Or
Download NTSE GURU Android App for free from Google Playstore.

A Team that made Cracking NTSE Easier Than Ever

