NTSE

NCERT Solutions for Class 9
MATHS - Areas of Parallelogram

India's Best 360° Online NTSE Preparation Platform
NTSE | CBSE | State Boards | Class 8th - 10th

1. In Figure, ABCD is a parallelogram, $\mathrm{AE} \perp \mathrm{DC}$ and $\mathrm{CF} \perp \mathrm{AD}$. If $\mathrm{AB}=16 \mathrm{~cm}, \mathrm{AE}=8 \mathrm{~cm}$ and $\mathrm{CF}=10$ cm , find $A D$.

Sol.
Area of parallelogram $A B C D=C D \times A E=16 \times 8 \mathrm{~cm}^{2}$

$$
\begin{align*}
& (\because \mathrm{AB}=\mathrm{CD}, \mathrm{ABCD} \text { is a parallelogram }) \\
& =128 \mathrm{~cm}^{2} \tag{1}
\end{align*}
$$

Also area of parallelogram $A B C D=A D \times C F=A D \times 10 \mathrm{~cm}^{2}$
From (1) and (2), we get

$$
A D \times 10=128
$$

$$
\begin{aligned}
& \Rightarrow \quad A D=\frac{128}{10} \\
& \Rightarrow \quad A D=12.8 \mathrm{~cm}
\end{aligned}
$$

2. $\quad \mathrm{P}$ and Q are any two points lying on the sides DC and AD respectively of a parallelogram ABCD . Show that $\operatorname{ar}(\mathrm{APB})=\operatorname{ar}(\mathrm{BQC})$.

Sol.

Download
NTSECURU Mobile App
FREE from

Given: P and Q are any two points lying on the sides DC and AD respectively of a parallelogram ABCD .
To Prove: Area $(\triangle A P B)=$ Area $(\triangle B Q C)$.
Proof : $\triangle A P B$ and parallelogram $A B C D$ are on the same base $A B$ and between the same parallels $A B$ and DC.
$\therefore \quad$ Area $(\triangle A P B)=\frac{1}{2}$ Area of parallelogram ABCD
$\therefore \quad \triangle B Q C$ and parallelogram ABCD are on the same base BC and between the same parallels BC and AD .
$\therefore \quad \operatorname{Area}(\triangle B Q C)=\frac{1}{2}$ Area (parallelogram ABCD$)$
From (1) and (2),
$\operatorname{Area}(\triangle A P B)=\operatorname{Area}(\triangle B Q C)$.
3. In Figure, P is a point in the interior of a parallelogram $A B C D$. Show that
(i) $\operatorname{ar}(A P B)+\operatorname{ar}(P C D)=\frac{1}{2} \operatorname{ar}(A B C D)$

(ii)

$$
\operatorname{ar}(A P D)+\operatorname{ar}(P B C)=\operatorname{ar}(A P B)+\operatorname{ar}(P C D)
$$

[Hint : Through P, draw a line parallel to AB.]
Sol. Given: \mathbf{P} is a point in the interior of a parallelogram $\mathbf{A B C D}$. To Prove:

(i) $\operatorname{ar}(A P B)+\operatorname{ar}(P C D)=\frac{1}{2} \operatorname{ar}(A B C D)$
(ii) $\operatorname{ar}(A P D)+\operatorname{ar}(P B C)=\operatorname{ar}(A P B)+\operatorname{ar}(P C D)$

Construction: Through P, draw a line EF parallel to AB.

I still wonder haw one man has such a deep understanding of an examination. It becomes the truth what er Viper fir says about NTSE

Proof: (i) $E F \| A B$
.....(1) (by construction)

$$
\begin{array}{rll}
& A D \| B C & (\because \text { Opposite sides of a parallelogram are parallel) } \\
\therefore & A E \| B F & \ldots . .(2) \tag{2}
\end{array}
$$

In view of (1) and (2),
Quadrilateral ABFE is a parallelogram (A quadrilateral is a parallelogram if it's opposite sides are parallel)
Similarly, quadrilateral CDEF is a parallelogram.
$\therefore \quad \triangle A P B$ and parallelogram ABFE are on the same base AB and between the same parallels AB and EF.
$\therefore \quad$ Area $(\triangle A P B)=\frac{1}{2}$ Area (parallelogram ABFE)
$\therefore \quad \triangle P C D$ and parallelogram CDEF are on the same base DC and between the same parallels DC and EF.
$\therefore \quad$ Area $(\triangle P C D)=\frac{1}{2}$ Area (parallelogram CDEF)
Adding (3) and (4), we get
$\operatorname{Area}(\triangle A P B)+\operatorname{Area}(\triangle P C D)=\frac{1}{2}$ Area $($ parallelogram ABFE $)+\frac{1}{2}$
Area $($ parallelogram CDEF$)=\frac{1}{2}[$ Area $($ parallelogram ABFE$)+$ Area $($ parallelogram CDEF $)]$

$$
\left.=\frac{1}{2} \text { Area (parallelogram } \mathrm{ABCD}\right)
$$

Area $(\triangle A P B)+$ Area $(\triangle P C D)=\frac{1}{2}$ Area (parallelogram ABCD)
(ii) \quad Area $(\triangle A P D)+$ Area $(\triangle P B C)=$ Area (parallelogram $A B C D)-$ Area $\triangle A P B+$ Area $\triangle P C D)]$

$$
\begin{array}{ll}
& =2[\operatorname{Area}(\triangle A P B)+\operatorname{Area}(\triangle P C D)]-\operatorname{Area} \triangle A P B+\operatorname{Area} \triangle P C D)](\text { From }(5)) \\
& =\operatorname{Area}(\triangle A P B)+\operatorname{Area}(\triangle P C D) \\
\therefore \quad & \text { Area }(\triangle A P D)+\operatorname{Area}(\triangle P B C)=\operatorname{Area}(\triangle A P B)+\operatorname{Area}(\triangle P C D)
\end{array}
$$

Unburden the parents of your Study Expenses

Govt. of India
provides you scholarship till Post Graduation studies after your crack NTSE exam
4. In Figure, PQRS and ABRS are parallelograms and X is any point on side BR. Show that
(i) $\quad \operatorname{ar}(\mathrm{PQRS})=\operatorname{ar}(\mathrm{ABRS})$
(ii) $\operatorname{ar}(A X S)=\frac{1}{2} \operatorname{ar}(P Q R S)$

Sol. Given: PQRS and ABRS are parallelograms and X is any point on side BR.

To Prove:

(i) $\operatorname{ar}(\mathrm{PQRS})=\operatorname{ar}(\mathrm{ABRS})$
(ii) $\operatorname{ar}(A X S)=\frac{1}{2} \operatorname{ar}(P Q R S)$

Proof:
(i) $\operatorname{ar}(\mathrm{ABRS})=\operatorname{ar}(\mathrm{PQRS})$
[\because Parallelograms on the same base and between the same parallels are equal in area]
(ii) $\triangle A X S$ and parallelogram ABRS are on the same base AS and between the same parallels AS and BR.

$$
\begin{aligned}
& \therefore \operatorname{ar}(\triangle A X S)=\frac{1}{2} \operatorname{ar}(\text { parallelogram ABRS) } \\
& =\frac{1}{2} \operatorname{ar}(\text { parallelogram PQRS })
\end{aligned}
$$

5. A farmer was having a field in the form of a parallelogram PQRS. She took any point A on RS and joined it to points P and Q. In how many parts the fields is divided? What are the shapes of these parts? The farmer wants to sow wheat and pulses in equal portions of the field separately. How should she do it?
Sol. The field is divided into three triangles. The three triangles are:
(i) $\triangle A P S$
(ii) $\triangle A P Q$
(iii) $\triangle A Q R$
$\operatorname{ar}(\triangle P S A)+\operatorname{ar}(\triangle P A Q)+\operatorname{ar}(\triangle Q R A)=\operatorname{ar}(P Q R S)$
If a parallelogram \& a triangle are on the same base and between the same parallel then area of triangle is half area of parallelogram.

$$
\begin{equation*}
\therefore \quad \operatorname{ar}(\triangle P A Q)=\frac{1}{2} \operatorname{ar}(P Q R S) \tag{2}
\end{equation*}
$$

So from (1) and (2)
$\operatorname{ar}(\triangle P S A)+\operatorname{ar}(\triangle Q R A)=\operatorname{ar}(\triangle P A Q)=\frac{1}{2} \operatorname{ar}(P Q R S)$

A Team that made

 Cracking NTSE Easier Than Ever6. In Figure, E is any point on median AD of a $\triangle \mathrm{ABC}$. Show that ar $(\mathrm{ABE})=\operatorname{ar}(\mathrm{ACE})$.

Sol. Given: E is any point on median AD of a $\triangle A B C$.
To Prove: area $(\triangle A B C)=\operatorname{area}(\triangle A C E)$.
Proof: In $\triangle A B C, \quad \mathrm{AD}$ is a median.
$\therefore \operatorname{area}(\triangle A B D)=\operatorname{area}(\triangle A C D)$
[Median of a triangle divides it into two triangles of equal area]
In $\triangle E B C$,
ED is a median.
$\therefore \operatorname{area}(\triangle E B D)=\operatorname{area}(\triangle E C D)$
Subtracting (2) from (1), we get
$\operatorname{Area}(\triangle A B D)-\operatorname{area}(\triangle E B D)=\operatorname{area}(\triangle A C D)-\operatorname{area}(\triangle E C D)$
$\Rightarrow \quad$ area $(\triangle A B D)-\operatorname{area}(\triangle E B D)=\operatorname{area}(\triangle A C D)-\operatorname{area}(\triangle E C D)$
$\Rightarrow \quad$ area $(\triangle A B E)=\operatorname{area}(\triangle A C E)$.
7. In Figure, ABCDE is a pentagon. A line through B parallel to AC meets DC produced at F . Show that
(i) $\operatorname{ar}(\mathrm{ACB})=\operatorname{ar}(\mathrm{ACF})$
(ii) $\operatorname{ar}(\mathrm{AEDF})=\operatorname{ar}(\mathrm{ABCDE})$

Sol. Given : ABCDE is a pentagon. A line through B parallel to AC meets DC produced at F .

To Prove :

(i) $\operatorname{ar}(\mathrm{ACB})=\operatorname{ar}(\mathrm{ACF})$
(ii) $\operatorname{ar}(\mathrm{AEDF})=\operatorname{ar}(\mathrm{ABCDE})$

Proof : (i) $\triangle A C B$ and $\triangle A C F$ are on the same base $A C$ and between the same parallels $A C$ and $B F$.

$$
[\because \mathrm{AC} \| \mathrm{BF} \text { (given) }]
$$

$\therefore \quad \operatorname{ar}(\triangle A C B)=\operatorname{ar}(\triangle A C F)$
$[\because$ Two triangles on the same base (or equal bases) and between the same parallels are equal in area]

```
\(\because \quad \operatorname{ar}(\triangle A C B)=\operatorname{ar}(\triangle A C F)\)
\(\Rightarrow \quad \operatorname{ar}(\triangle A C B)+\operatorname{ar}(\mathrm{AEDC})=\operatorname{ar}(\triangle A C F)+\operatorname{ar}(\mathrm{AEDC})\) [Add area (AEDC) on both sides]
\(\Rightarrow \quad \operatorname{ar}(\mathrm{ABCDE})=\operatorname{ar}(\mathrm{AEDF})\)
\(\Rightarrow \quad \operatorname{ar}(\mathrm{AEDF})=\operatorname{ar}(\mathrm{ABCDE})\).
```

8. A villager Itwaari has a plot of land of the shape of a quadrilateral. The Gram Panchayat of the village decided to take over some portion of his plot from one of the corners to construct a Health Centre. Itwaari agrees to the above proposal with the condition that he should be given equal amount of land in lieu of his land adjoining his plot so as to form a triangular plot. Explain how this proposal will be implemented.
Sol. Let ABCD be the plot of land in the shape of a quadrilateral. Let the portion ADE be taken over by the Gram Panchayat of the village from one corner D to construct a Health Centre.
Join AC.
Draw a line through D parallel to AC to meet BC produced in P .
Then Itwaari must be given the land ECP adjoining his plot so as to forma triangular plot ABP as then $\operatorname{ar}(\triangle A D E)=\operatorname{ar}(\triangle P E C)$

Proof : $\triangle D A P$ and $\triangle D C P$ are on the same base DP and between the same parallels DP and AC.
 between the same parallels are equal in area)]
$\Rightarrow \quad \operatorname{ar}(\triangle D A P)-\operatorname{ar}(\triangle D E P)=\operatorname{ar}(\triangle D C P)-\operatorname{ar}(\triangle D E P)$
[Subtract ar ($\triangle D E P$) from both sides]
$\operatorname{Ar}(\triangle A D E)=\operatorname{ar}(\triangle P C E)$
$\Rightarrow \quad \operatorname{ar}(\triangle A D E)+\operatorname{ar}(A B C E)=\operatorname{ar}(\triangle P C E)+\operatorname{ar}(A B C E)$
[Add ar (ABCE) both sides]
$\Rightarrow \quad \operatorname{ar}(\mathrm{ABCD})=\operatorname{ar}(\triangle A B P)$

OSubscribe to

9. In Figure, $\mathrm{AP}\|\mathrm{BQ}\| \mathrm{CR}$. Prove that $\operatorname{ar}(\mathrm{AQC})=\operatorname{ar}(\mathrm{PBR})$.

Sol. Given : AP $\|\mathrm{BQ}\| \mathrm{CR}$.
To Prove : ar $(\triangle A Q C)=\operatorname{ar}(\triangle P B R)$.
Proof : $\triangle B A Q$ and $\triangle B P Q$ are on the same base BQ and between the same parallels BQ and AP .

$$
\begin{equation*}
\therefore \quad \operatorname{ar}(\triangle B A Q)=\operatorname{ar}(\triangle B P Q) \tag{1}
\end{equation*}
$$

[Two triangles on the same base (or equal bases) and between the same parallels are equal in area] $\triangle B C Q$ and $\triangle B Q R$ are on the same base BQ and between the same parallels BQ and CR .
$\operatorname{Ar}(\triangle B C Q)=\operatorname{ar}(\triangle B Q R)$
[Two triangles on the same base (or equal bases) and between the same parallels are equal in area] Adding the corresponding sides of (1) and (2), we get
$\operatorname{ar}(\triangle B A Q)+\operatorname{ar}(\triangle B C Q)=\operatorname{ar}(\triangle B P Q)+\operatorname{ar}(\triangle B Q R)$
$\Rightarrow \quad \operatorname{ar}(\triangle A C Q)=\operatorname{ar}(\triangle P B R)$
10. In Figure, $\operatorname{ar}(\mathrm{DRC})=\operatorname{ar}(\mathrm{DPC})$ and $\operatorname{ar}(\mathrm{BDP})=\operatorname{ar}(\mathrm{ARC})$. Show that both the quadrilaterals ABCD and DCPR are trapeziums.

Sol. Given: $\operatorname{ar}(\triangle D R C)=\operatorname{ar}(\triangle D P C)$ and ar $(\triangle B D P)=\operatorname{ar}(\triangle A R C)$.
To Prove: Both the quadrilateral ABCD and DCPR are trapeziums.
Proof: ar $(\triangle D R C)=\operatorname{ar}(\triangle D P C)$ (given)(1)
But $\triangle D R C$ and $\triangle D P C$ are on the same base DC.
© Subscribe to

$\therefore \triangle D R C$ and $(\triangle D P C)$ will have equal corresponding altitudes.
and $\triangle D R C$ and $(\triangle D P C)$ will lie between the same parallels.
$\therefore D C \| R P \quad[\because$ A quadrilateral is a trapezium if exactly one pair of opposite sides is parallel.]
$\Rightarrow \quad D C P R$ is a trapezium.
Again, ar $(\triangle B D P)=\operatorname{ar}(\triangle A R C)$
\Rightarrow ar $(\triangle B D C)+$ ar $(\triangle D P C)=$ ar $(\triangle A D C)+$ ar $(\triangle D R C)$
$\Rightarrow \operatorname{ar}(\triangle B D C)=\operatorname{ar}(\triangle A D C)$
(Using (1)
But $\Delta \mathrm{BDC}$ and $\triangle \mathrm{ADC}$ are on the same base DC .
$\therefore \quad \triangle B D C$ and $\triangle A D C$ will have equal corresponding altitudes.
And $\triangle B D C$ and $\triangle A D C$ will lie between the same parallels.
$\therefore A B \| D C$
$\Rightarrow \quad \mathrm{ABCD}$ is a trapezium.
$[\because$ A quadrilateral is a trapezium if exactly one pair of opposite sides is parallel.]

For complete NCERT Solutions visit www.ntseguru.in \& take a free demo.

Or

Download NTSE GURU Android App for free from Google Playstore.

An

